Technische Universitit Miinchen Dr. K. N. Verma
Fakultat fiir Informatik verma@in.tum.de
Prof. Dr. H. Seidl Room: MI 02.07.041

Abstract Machines

Summer Semester 200/
5. Homework Deadline: 2 June 2004 12:00

Exercise 1: 10 Points

Have a look at the code generated for the expression e = (a + a) with p = {a — (L,1)}
and kp = 1. It was created using the Call by Need strategy.

codey e p 1 = getvar a p 1 = 1 pushloc 0
eval 2 eval
getbasic 2 getbasic
getvar a p 2 2 pushloc 1
eval 3 eval
getbasic 3 getbasic
add 3 add
mkbasic 2 mkbasic

The eval instructions check whether the value of a has been computed. If not a still has
to be evaluated. The second occurrence of eval in the above code is redundant, because
the value of a is already known at this point.
The code generation functions can be modified such that redundant eval instructions are
not generated any more. To do so, extend the code generation function for an expression
e with an additional argument A. A collects the set of visible variables that are bound
outside e and that have always been evaluated when reaching the code to be generated
for e.
Thus the code generation scheme for variable access shall look as follows:
getvar x p kp Jifre A

codey z p kp A = setvar = p kp

eval , otherwise

For example:

codey (e Oz en)pkp A = codege;pkp A
codeg ez p (kp +1) AUA]e;]
op,; mkbasic

where Aley] is the set of free variables in the expression e; which already must have been
evaluated in order to evaluate e;.



a) Define formally Ale], where e is a PuF expression.

b) Modify the code generation functions for PuF expressions in order to get rid of
redundant eval instructions.

Exercise 2: 3+7 Points

Generate code for the following expressions:

a) 1 + let
x =g+ 10;
y=x % 4
iny *x g
with p = {g— (G,1)} and kp = 1.
b) letrec
fib = fn x => if x <= 1 then 1 else (fib (x-1)) + (fib (x-2))
in fib 4

with p = () and kp = 0.



