The Translation of Functional
Programming Languages



11 The language PuF

We only regard a mini-language PuF (“Pure Functions”).
We do not treat, as yet:
e Side effects;

e Data structures.

109



A Program is an expression ¢ of the form:

e = | x | (O1e) | (eg Ope2)

if eg then e; else e))

fn xg,..., X1 :>€)

let xy =eq;...;x, = e, in ep)

b
(
(e'ey...ex 1)
(
(
(

letrec x1 =e1;...;X, = e, in ¢p)

An expression is therefore
e a basic value, a variable, the application of an operator, or
e a function-application, a function-abstraction, or
e a let-expression, i.e. an expression with locally defined variables, or

e a letrec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow i nt and bool as basic types.

110



Example:

The following well-known function computes the factorial of a natural number:

letrec fac = fnx=if x <1thenl
else x - fac (x — 1)

in fac7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in
SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their
value is needed (as in Haskell).

111



12 Architecture of the MaMa:

We know already the following components:

C

0 1 PC

C =  Code-store — contains the MaMa-program;
each cell contains one instruction;

PC =  Program Counter — points to the instruction to be executed next;

112



SP

FP

SP
FP

Runtime-Stack — each cell can hold a basic value or an address;
Stack-Pointer — points to the topmost occupied cell;
as in the CMa implicitely represented;

Frame-Pointer — points to the actual stack frame.

113



We also need a heap H:

Tag

Code Pointer

Vaue

Heap Pointer

114



... it can be thought of as an abstract data type, being capable of holding data
objects of the following form:

Y/

B|-173 Basic Value
cp ap

C Closure
Cp ap ap

F Function
vi0] ... v[n—1]

Vin Vector

115



The instruction new (tag, args) creates a corresponding object (B, C, F, V) in H
and returns a reference to it.

We distinguish three different kinds of code for an expression e:

e codey ¢ — (generates code that) computes the Value of ¢, stores it in the
heap and returns a reference to it on top of the stack (the normal case);

e codep ¢ — computes the value of e, and returns it on the top of the stack
(only for Basic types);

e codec ¢ — does not evaluate e, but stores a Closure of e in the heap and
returns a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

116



13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals
are translated like expressions in imperative languages:

codeg b p sd = loadc b

codep (O7 e) p sd = codegep sd
OopP,

codeg (e1 Oy ex) psd = codeg e p sd

codegey p (sd + 1)
P>

117



codep (if e then eq elseey) psd = codeg eg p sd
jumpz A
codep ey p sd
jump B
A: codege; psd

S5

118



Note:

e p denotes the actual address environment, in which the expression is
translated. Address environments have the form:

p:Vars - {L,G} X Z

e The extra argument sd, the stack difference, simulates the movement of the
SP when instruction execution modifies the stack. It is needed later to
address variables.

e The instructions op, and op, implement the operators O; and 0, in the

same way as the the operators neg and add implement negation resp.
addition in the CMa.

e For all other expressions, we first compute the value in the heap and then
dereference the returned pointer:

codegepsd = codeyepsd

getbasic

119



17

17

getbasic

if (H[S[SP]] = (B, ))

Error “not basic!”;

else
S[SP] = H[S[SP]].v;

120




For codey and simple expressions, we define analogously:

codey b p sd

codey (O7 e) psd

codey (ey Oz ;) p sd

codey (if eg then eq else e;) p sd

121

S5

loadc b; mkbasic

codep e p sd

op,; mkbasic

codepeq p sd
codegey p (sd+ 1)

op,; mkbasic

codegpeg p sd
jumpz A
codey e p sd
jump B

codey ep p sd



17

mkbasic

S[SP] = new (B,S[SP]);

122

17




14 Accessing Variables

We must distinguish between local and global variables.

Example: Regard the function f :
let ¢c=5
f=fna = letb=axa

inb+c
in fc
The function f uses the global variable ¢ and the local variables a (as formal

parameter) and b (introduced by the inner let).

The binding of a global variable is determined, when the function is constructed
(static scoping!), and later only looked up.

123



Accessing Global Variables

e The bindings of global variables of an expression or a function are kept in a
vector in the heap (Global Vector).

e They are addressed consecutively starting with 0.

e When an F-object or a C-object are constructed, the Global Vector for the
function or the expression is determined and a reference to it is stored in the
gp-component of the object.

e During the evaluation of an expression, the (new) register GP (Global
Pointer) points to the actual Global Vector.

e In constrast, local variables should be administered on the stack ...

— General form of the address environment:

p:Vars — {L,G} X Z

124



Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Lete=¢' e ... e,_1 be the application of a function ¢’ to arguments

80, .« o ,em_l.
Warning:

The arity of ¢’ does not need tobe m  :-)
e PuF functions have curried types, f : t; = t, — ... = t, —t
e f may therefore receive less than n arguments (under supply);

e f may also receive more than n arguments, if ¢ is a functional type (over
supply).

125



Possible stack organisations:

> F e’
- €m—1
.
>
L €o

FP— =

+ Addressing of the arguments can be done relative to FP’
— The local variables of ¢’ cannot be addressed relative to FP.

— If ¢’ is an n-ary function with n < m, i.e., we have an over-supplied function
application, the remaining m — n arguments will have to be shifted.

126



— If ¢’ evaluates to a function, which has already been partially applied to the
parameters ay, . . ., dx_1, these have to be sneaked in underneath ¢:

> €m—1
.
|
I aq
- ao
FP ——— >

127



Alternative:

= F e’

> eo
]

>
> €m—1

FP— =

+ The further arguments ay, . . ., ax_1 and the local variables can be allocated
above the arguments.

128



> ap
)>
a1
> €0
=
%
> Cm—1

FP— =

— Addressing of arguments and local variables relative to FP is no more
possible. (Remember: m is unknown when the function definition is
translated.)

129



Way out:

e We address both, arguments and local variables, relative to the stack pointer
Ssp i

e However, the stack pointer changes during program execution...

SP———

FP— >

130



The differerence between the current value of SP and its value sp, at the
entry of the function body is called the stack distance, sd.

Fortunately, this stack distance can be determined at compile time for each
program point, by simulating the movement of the SP.

The formal parameters xg, x1, x2, . . . successively receive the non-positive
relative addresses 0, —1, -2, ..., i.e., px; = (L,—i).

The absolute address of the i-th formal parameter consequently is
spyg—i = (SP —sd) —i

The local let-variables y1, 2, 3, . . . will be successively pushed onto the
stack:

131



SP ———

sd 3 . 3 \
2 e 1
1 —>— Y1
- Py 0 R X0
-1 > Xq
—9 I Y
= Xk—1

e The y; have positive relative addresses 1,2, 3, .., that is: pyi=(L,i).
e The absolute address of y; is then spy+i=(SP —sd)+i

132



With CBN, we generate for the access to a variable:

codey x psd = getvar x psd

eval

The instruction eval checks, whether the value has already been computed
or whether its evaluation has to yet to be done (== will be treated later :-)
With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvarx psd = let(t,i) =pxin
case t of
L = pushloc (sd — i)
G = pushglob i

end

133



The access to local variables:

|

pushloc n

S[SP+1] =S[SP - n]; SP++;

134



Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the
execution of the instruction. The value of the local variable with address i is
loaded from S|a] with

a=sp—(sd—1i)=(sp—sd)+i=sp,+i
... exactly as it should be  :-)

135



The access to global variables is much simpler:

GP —

pushglob i

SP =SP + 1;

GP —

S[SP] = GP—v[il;

136



Example:

Regard e= (b+c) for p={b— (L,1),c— (G,0)}and sd=1.
With CBN, we obtain:

137

codeyepl getvarbp 1 1 pushlocO

eval 2 eval
getbasic 2 getbasic
getvarc p 2 2 pushglob 0
eval 3 eval
getbasic 3 getbasic
add 3 add
mkbasic 2 mkbasic



15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)
Let e=lety; =e1;,...;y, =e,iney be alet-expression.
The translation of e must deliver an instruction sequence that

e allocates local variables y1, ..., yu;

e in the case of
CBV: evaluates ey, . . ., e, and binds the y; to their values;
CBN: constructs closures for the ey, . . ., ¢, and binds the y; to them;

e evaluates the expression ¢y and returns its value.

Here, we consider the non-recursive case only, i.e. where y; only depends on
Y1,...,Yj-1. We obtain for CBN:

138



codey e psd = codec e; psd

codec e p1 (sd +1)

codec e, py—1 (sd+n—1)
codey ey p, (sd +n)

slide n // deallocates local variables

where pi=p@{yi— (L,sd+i)|i=1,...,j}.

In the case of CBV, we use codey for the expressions ey, .. ., ej.
Warning!

All the e; must be associated with the same binding for the global variables!

139



Example:

Consider the expression
e=leta=19,b=axaina—+b

for p = () and sd = 0. We obtain (for CBV):

0  loadc19 3 getbasic 3  pushloc1
1 mkbasic 3 mul 4  getbasic
1 pushlocO 2 mkbasic 4  add

2 getbasic 2 pushloc1 3  mbkbasic
2 pushloc1 3  getbasic 3 slide2

140



The instruction slide k deallocates again the space for the locals:

slide k

S[SP-k] = S[SP];
SP =SP - k;

141



