Dr. K. N. Verma verma@in.tum.de Room: MI 02.07.041

Deadline: 6 May 2005 12:00

Abstract Machines

Summer Semester 2005

3. Homework

Exercise 1: 6 Points

Write the following functions in OCaml (without using OCaml library functions with the same names).

- a) filter, which takes as argument a predicate p and a list l, and returns the list of elements from l for which p is true.
- b) fold_right, such that

$$fold_right \ f \ e \ [x_1, \dots, x_n] = f(x_1, f(x_2, \dots, f(x_n, e)) \dots).$$

c) mapi, such that

mapi
$$f[x_1, \ldots, x_n] = [f(x_1, 1), \ldots, f(x_n, n)].$$

For example, for f(x, i) = x + i and l = [3, 3, 3], mapi f l should return [4, 5, 6].

Exercise 2: 4+4 Points

- a) Give a formal definition of the function free such that $free(e) \subseteq Vars$ is the set of global variables in e.
- b) Determine the set of global variables for each of the following expressions.
 - $(fn x \Rightarrow x y) (fn y \Rightarrow y)$
 - fn x,y \Rightarrow z (fn z \Rightarrow z (fn x \Rightarrow y))
 - $(fn x,y \Rightarrow x z (y z)) (fn x \Rightarrow y (fn y \Rightarrow y))$
 - ((fn x => x) z) + let a = x; x = f y; y = z in x+y+z

Exercise 3: 6 Points

Consider the expression $e \equiv \text{if } \mathbf{x} > 1$ then \mathbf{x} else $\mathbf{x} + \mathbf{y} * \mathbf{x}$ along with the address environment $\rho = \{x \mapsto (L,1), y \mapsto (L,-1)\}$ and stack distance sd = 3. Compute $code_V \ e \ \rho \ sd$. Annotate every instruction with the current stack distance like in the examples in the lecture.