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Planned contents

e Buffer overflow attacks

—— Prevention using program analysis
e Security issues in Java
e Type systems for safety
e Bytecode verification and proof carrying code

e Techniques for access control and information flow analysis



Computer Security

Some goals
e Confidentiality of information
e Authenticity
e Preventing other improper behavior like not paying for services
e Ensuring availability of services

e Preventing damage of information



Challenges
e Increasing complexity of software; frequent updates
e Untrusted programs
e Computer systems are not isolated

e Numerous possibilities for attacks: webpages with executables, emails,

cookies, ..

e Financial cost of an insecurity could be huge



The Morris Worm, 1988
e One of the first known internet worms.
e Among others it exploited a buffer overflow vulnerability in fingerd.

e A worm at an infected host copied itself to other hosts by exploiting
vulnerabilities. The number of copies running at a host slowed it down to

the point of being unusable.
e An estimated 6000 machines (10 % of hosts at that time) were infected.

e Huge financial losses were incurred because infected hosts were unable to

continue functioning.

New buffer overflow vulnerabilities still continue to be found.



The MS-SQL Slammer worm, 2003

e Exploited a buffer overflow vulnerability in Micorsoft SQL server

announced in 2002.

o Affected more than 75000 hosts, most of them within the first 10 minutes.

The Code Red worm, 2001

e Exploited a buffer overflow vulnerability in Microsoft’s IIS web server.



Bufter overflows

e The C language allows access to arbitrary memory locations through

improper use of pointers.

e This leads to a typical programming error of accessing a buffer (array)

beyond the space allocated for it.

e Typically exploited by stack smashing attacks involving overflowing buffers

on the stack to overwrite the return address.

e Data extracted from CERT advisories show that buffer overflows are

responsible for nearly half of todays vulnerabilities.



Pointers and arrays in C

For any variable we can obtain the corresponding memory location using the &

operator. The * operator gives the value stored at a memory location.




This leads to pointer arithmetic:

C allows access to arbitrary memory locations through pointers.

Here we need to know that x and y are allocated space on consecutive locations.
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The declaration
int x,y,Z;

leads to allocation of space on the stack as follows.

SP

top of stack >

(Stack Pointer,
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decreasing memory
addresses
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Allocating space for arrays on the stack:
int al[10];

a 1s also the address where a[0] is stored. a[5]=10 is same as *x(a+5)=10.

SP :> )

y
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Enough ingredients for errors introduced by careless programmers!

Out of bound access in array a, leading to modification of value of x.

No checks enforced by the C language!
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Compare with Java — a strongly typed language




Exceptions may then be caught and some other action taken.




Function calls and stack frames

e Each time a function is called, space must be allocated for the local
variables of the function. This region of the stack is called the stack frame

for this function call.

= Use a Frame Pointer (FP, %ebp) to indicate the location of the current

frame. This allows easy access to the local variables at runtime.

e On return from a function call, execution must continue from the next

instruction after the function call.

= Store the old instruction pointer (PC) in the stack frame.
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e On return from a function, the current stack frame is popped out and

execution continues with the previous stack frame.

= Store the old FP on the stack.
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A simple example of function call.

Let’s see the compiled code produced.

$ gdb function
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The caller:

The arguments are pushed on to the stack and the function is called.
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The caller:

The arguments are pushed on to the stack and the function is called.

And the callee. ..
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Save old FP, update FP

Allocate space for local variables, do computations
Restore F'P, pop saved FP from stack

Return (restore PC, pop saved PC from stack)
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At run time: pushing arguments
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Calling function:

SP
FP

PC| q

saving PC and updating PC

call p
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Inside callee: saving FP and updating FP
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Allocating space for local variables
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End of callee: restoring FP and popping saved FP
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equivalently:
mov %ebp, %esp
pop %ebp
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Returning: restoring PC and popping saved PC

SP
FP

PC

Y

10

20

return

Y

SP
FP

PC

Y

10

20

Y

26



The return address is stored on the stack.

= it can also be overwritten to point to arbitrary code!!!

void f () {
int a [10];
all5] +=T;

main () {
int x = 10;
£ ()
x = 20;
printf ("x=%d!\n”,x);

}

We have skipped the instruction x = 20; !

e Where is the return address stored (a[15])?

Output:

x=10!

e What should be the new return address (increment by 7)?
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Organization of the stack: al0], ..., al9], old FP, old PC

Hence the return address is at the location a|11].
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Organization of the stack: al0], ..., al9], old FP, old PC
Hence the return address is at the location a|11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

= Look at the compiled code.
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Organization of the stack: al0], ..., al9], old FP, old PC
Hence the return address is at the location a|11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

= Look at the compiled code.

0x8048344 <f>: push  %ebp
0x8048345 <f+1>: mov  %esp,%ebp
0x8048347 <f+3>: sub $0x38,%esp

Space allocated after old FP is 0x38 = 56 = 4*14 bytes.

Hence return address is at address a[15]
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Instruction x = 20; requires 35 - 28 = 7 bytes.

Hence we put a[15] +=7 in the function f in order to skip execution of this

instruction.

= Besides modifying data, we may cause arbitrary code to be executed!
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Weaknesses can be exploited by users by supplying appropriate inputs.

int main (int argc, char xargv([]) {
char s[1024];

strepy (s, argv [1]);

e An appropriate input is given to overwrite the return address,
e At the minimum, the program may abort abruptly.

e An ingenious attacker may get some desired code to be executed (shellcode)

by providing it as a part of the input string!
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Heap based overflows: buffer overflows in the heap instead of the stack.

char xp = (char %) malloc (1024);

Heap Heap
End of heap b
] 1024
U End of heap | bytes
I
7
Stack Stack

Instead of overwriting return addresses, an attacker may overwrite important

variables.
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Further errors arise because of improper use of string library functions.

In C, the end of a string is indicated by the null character.

The statement strepy (s,t);

will keep copying characters starting from t till a null character is found,

irrespective of space allocated for s and t.

i = strlen (s);

tries to find the first null charachter beyond s.
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Some techniques for preventing buffer overflow attacks.

e Careful programming: e.g. use strncpy instead of strcpy.

e Make the stack region non-executable: however some applications make use

of an executable stack.

e Compiler tools: save the return address at a safe place (data region).

e Run time checks: use a preloaded library which provides safer versions of

standard unsafe functions.
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Detecting buffer overflow vulnerabilities

e Static program analysis: automated analysis of programs without running
them.

e an exact analysis of buffer overflow vulnerabilities is theoretically impossible.

—> do approximate analysis:
e we fail to detect some vulnerabilities: unsafe approximation :-(
e or we declare certain good programs as vulnerable: safe approximation :-)

e or both :-((

e tradeofl between efficiency of analysis and precision of analysis.
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Use of integer analysis

Most vulnerabilities are caused due to improper string manipulation.

Modify the program to include

e integer variables representing lengths of strings, overlaps between strings,

etc.

e safety conditions before all string manipulation instructions.

Use well-known integer analysis algorithms to verify the safety conditions.

— we reduce string analysis problem to integer analysis problem :-)
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Ideas: Dor, Rodeh and Sagiv

Instrumented C code

Original C code

char s [10]; int sAlloc = 10;
assert (15 < sAlloc);
s[15] =’a’;

char s [10];
s[15] ="a’;

The integer variable sAlloc remembers the space allocated for string s.

The statement assert(15 < sAlloc); says that the program should abort here if
sAlloc < 15.

We use an integer analysis algorithm to check that the assert conditions are
satisfied.
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