Language Based Security

Kumar Neeraj Verma

TU Munchen

Summer Semester 2006

Organization

Lectures: Wednesday, 10:15 - 11:45
Tutorials: Friday, 10:15 - 11:00
Starting 12.05.06

Schein: Written examination

Planned contents

e Buffer overflow attacks

—— Prevention using program analysis
e Security issues in Java
e Type systems for safety
e Bytecode verification and proof carrying code

e Techniques for access control and information flow analysis

Computer Security

Some goals
e Confidentiality of information
e Authenticity
e Preventing other improper behavior like not paying for services
e Ensuring availability of services

e Preventing damage of information

Challenges
e Increasing complexity of software; frequent updates
e Untrusted programs
e Computer systems are not isolated

e Numerous possibilities for attacks: webpages with executables, emails,

cookies, ..

e Financial cost of an insecurity could be huge

The Morris Worm, 1988
e One of the first known internet worms.
e Among others it exploited a buffer overflow vulnerability in fingerd.

e A worm at an infected host copied itself to other hosts by exploiting
vulnerabilities. The number of copies running at a host slowed it down to

the point of being unusable.
e An estimated 6000 machines (10 % of hosts at that time) were infected.

e Huge financial losses were incurred because infected hosts were unable to

continue functioning.

New buffer overflow vulnerabilities still continue to be found.

The MS-SQL Slammer worm, 2003

e Exploited a buffer overflow vulnerability in Micorsoft SQL server

announced in 2002.

o Affected more than 75000 hosts, most of them within the first 10 minutes.

The Code Red worm, 2001

e Exploited a buffer overflow vulnerability in Microsoft’s IIS web server.

Bufter overflows

e The C language allows access to arbitrary memory locations through

improper use of pointers.

e This leads to a typical programming error of accessing a buffer (array)

beyond the space allocated for it.

e Typically exploited by stack smashing attacks involving overflowing buffers

on the stack to overwrite the return address.

e Data extracted from CERT advisories show that buffer overflows are

responsible for nearly half of todays vulnerabilities.

Pointers and arrays in C

For any variable we can obtain the corresponding memory location using the &

operator. The * operator gives the value stored at a memory location.

This leads to pointer arithmetic:

C allows access to arbitrary memory locations through pointers.

Here we need to know that x and y are allocated space on consecutive locations.

10

The declaration
int x,y,Z;

leads to allocation of space on the stack as follows.

SP

top of stack >

(Stack Pointer,
SP, %esp)

decreasing memory
addresses

y

Allocating space for arrays on the stack:
int al[10];

a 1s also the address where a[0] is stored. a[5]=10 is same as *x(a+5)=10.

SP :>)

y

12

Enough ingredients for errors introduced by careless programmers!

Out of bound access in array a, leading to modification of value of x.

No checks enforced by the C language!

13

Compare with Java — a strongly typed language

Exceptions may then be caught and some other action taken.

Function calls and stack frames

e Each time a function is called, space must be allocated for the local
variables of the function. This region of the stack is called the stack frame

for this function call.

= Use a Frame Pointer (FP, %ebp) to indicate the location of the current

frame. This allows easy access to the local variables at runtime.

e On return from a function call, execution must continue from the next

instruction after the function call.

= Store the old instruction pointer (PC) in the stack frame.

16

e On return from a function, the current stack frame is popped out and

execution continues with the previous stack frame.

= Store the old FP on the stack.

SP

Y

FP

Y

other
values

local
variables

old FP

old IP

argl

argn

A

17

A simple example of function call.

Let’s see the compiled code produced.

$ gdb function

18

The caller:

The arguments are pushed on to the stack and the function is called.

19

The caller:

The arguments are pushed on to the stack and the function is called.

And the callee. ..

19-a

Save old FP, update FP

Allocate space for local variables, do computations
Restore F'P, pop saved FP from stack

Return (restore PC, pop saved PC from stack)

20

At run time: pushing arguments

SP
FP

PC

Y

SP
push $0x14 FP
push $0xa PC

Y

10

20

y

21

Calling function:

SP
FP

PC| q

saving PC and updating PC

call p

Y

10

20

Y

SP
FP

PC

Y

10

20

Y

22

Inside callee: saving FP and updating FP

SP
FP

PC

y

y

10

20

SP

FP

PC

push %ebp
mov %esp,%ebp

)

Y

10

20

A

23

Allocating space for local variables

SP
FP

PC

Y

10

20

A

SP o
FP b
PC a_
q
sub $0xc, Y%esp 10
20

/

A

24

End of callee: restoring FP and popping saved FP

SP
FP

PC

10

20

A

SP

FP

PC

leave

/

equivalently:
mov %ebp, %esp
pop %ebp

y

y

10

20

25

Returning: restoring PC and popping saved PC

SP
FP

PC

Y

10

20

return

Y

SP
FP

PC

Y

10

20

Y

26

The return address is stored on the stack.

= it can also be overwritten to point to arbitrary code!!!

void f () {
int a [10];
all5] +=T;

main () {
int x = 10;
£ ()
x = 20;
printf ("x=%d!\n”,x);

}

We have skipped the instruction x = 20; !

e Where is the return address stored (a[15])?

Output:

x=10!

e What should be the new return address (increment by 7)?

27

Organization of the stack: al0], ..., al9], old FP, old PC

Hence the return address is at the location a|11].

28

Organization of the stack: al0], ..., al9], old FP, old PC
Hence the return address is at the location a|11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

= Look at the compiled code.

28-a

Organization of the stack: al0], ..., al9], old FP, old PC
Hence the return address is at the location a|11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

= Look at the compiled code.

0x8048344 <f>: push %ebp
0x8048345 <f+1>: mov %esp,%ebp
0x8048347 <f+3>: sub $0x38,%esp

Space allocated after old FP is 0x38 = 56 = 4*14 bytes.

Hence return address is at address a[15]

28-b

Instruction x = 20; requires 35 - 28 = 7 bytes.

Hence we put a[15] +=7 in the function f in order to skip execution of this

instruction.

= Besides modifying data, we may cause arbitrary code to be executed!

29

Weaknesses can be exploited by users by supplying appropriate inputs.

int main (int argc, char xargv([]) {
char s[1024];

strepy (s, argv [1]);

e An appropriate input is given to overwrite the return address,
e At the minimum, the program may abort abruptly.

e An ingenious attacker may get some desired code to be executed (shellcode)

by providing it as a part of the input string!

30

Heap based overflows: buffer overflows in the heap instead of the stack.

char xp = (char %) malloc (1024);

Heap Heap
End of heap b
] 1024
U End of heap | bytes
I
7
Stack Stack

Instead of overwriting return addresses, an attacker may overwrite important

variables.

31

Further errors arise because of improper use of string library functions.

In C, the end of a string is indicated by the null character.

The statement strepy (s,t);

will keep copying characters starting from t till a null character is found,

irrespective of space allocated for s and t.

i = strlen (s);

tries to find the first null charachter beyond s.

32

Some techniques for preventing buffer overflow attacks.

e Careful programming: e.g. use strncpy instead of strcpy.

e Make the stack region non-executable: however some applications make use

of an executable stack.

e Compiler tools: save the return address at a safe place (data region).

e Run time checks: use a preloaded library which provides safer versions of

standard unsafe functions.

33

Detecting buffer overflow vulnerabilities

e Static program analysis: automated analysis of programs without running
them.

e an exact analysis of buffer overflow vulnerabilities is theoretically impossible.

—> do approximate analysis:
e we fail to detect some vulnerabilities: unsafe approximation :-(
e or we declare certain good programs as vulnerable: safe approximation :-)

e or both :-((

e tradeofl between efficiency of analysis and precision of analysis.

34

Use of integer analysis

Most vulnerabilities are caused due to improper string manipulation.

Modify the program to include

e integer variables representing lengths of strings, overlaps between strings,

etc.

e safety conditions before all string manipulation instructions.

Use well-known integer analysis algorithms to verify the safety conditions.

— we reduce string analysis problem to integer analysis problem :-)

35

Ideas: Dor, Rodeh and Sagiv

Instrumented C code

Original C code

char s [10]; int sAlloc = 10;
assert (15 < sAlloc);
s[15] =’a’;

char s [10];
s[15] ="a’;

The integer variable sAlloc remembers the space allocated for string s.

The statement assert(15 < sAlloc); says that the program should abort here if
sAlloc < 15.

We use an integer analysis algorithm to check that the assert conditions are
satisfied.

36

