
Handling pointer arithmetic.

Original C code

char s [10];

char ∗p;

p = s + 7;

p[5] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

char ∗p; int pAlloc = 0;

assert (7 <= sAlloc);

p = s + 7; pAlloc = sAlloc - 7;

assert (5 < pAlloc);

p[5] = ’a ’;

The second assert condition does not hold, as desired.

37



Handling pointer arithmetic.

Original C code

char s [10];

char ∗p;

p = s + 7;

p[5] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

char ∗p; int pAlloc = 0;

assert (7 <= sAlloc);

p = s + 7; pAlloc = sAlloc - 7;

assert (5 < pAlloc);

p[5] = ’a ’;

The second assert condition does not hold, as desired.
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Complex control flow constructs are automatically handled.

char s [10];

int i ;

for ( i=0; i<=15; i++) {

s [ i ] = ’a ’;

}

char s [10]; int sAlloc = 10;

int i ;

for ( i=0; i <=15; i++) {

assert (i < sAlloc);

s [ i ] = ’a ’;

}

The asserted condition will be violated at some point during the execution of

the program, as desired.
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String manipulation functions like strcpy, strlen, strcat should be treated

directly, without analyzing their code.

char s [10];

char t [10];

strcpy (s , t );

This code is vulnerable.

Cannot be detected from information about sAlloc and tAlloc.

Need further variables:

sIsNull s is a null terminated string (boolean)

sLen length of s
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Instrumented code

char s [10]; int sAlloc=10, sIsNull=false, sLen;

char t [10]; int tAlloc=10, tIsNull=false, tLen;

assert (tIsNull && tLen < sAlloc)

strcpy (s , t );

sIsNull=true; sLen=tLen;

The asserted condition is violated, as desired.
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char ∗p; int pAlloc=0, pIsNull=false, pLen;

char s [20]; int sAlloc=20, sIsNull=false, sLen;

p=”Hello World!”; pAlloc=13; pIsNull=true; pLen=12;

assert(pIsNull && pLen < sAlloc)

strcpy(s ,p);

sIsNull=true; sLen=pLen;

The asserted condition holds, as desired.
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Dealing with string overlaps.

char ∗p, ∗q, s [20], t [20]; ... instrumentation code ...

p=”Hello World!”; ...

q=s+6; ...

/* here qIsNull == sIsNull == false */

strcpy(s ,p); sIsNull=true; sLen=pLen;

/* here sIsNull == true, qIsNull == false */

assert (qIsNull && qLen < tAlloc)

strcpy(t ,q); ...

The asserted condition for second strcpy fails :-(

After the first strcpy, the variables qIsNull and qLen are not updated.

=⇒ need further variables for keeping track of overlaps between strings.
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Dealing with string overlaps.

char ∗p, ∗q, s [20], t [20]; ... instrumentation code ...

p=”Hello World!”; ...

q=s+6; ...

/* here qIsNull == sIsNull == false */

strcpy(s ,p); sIsNull=true; sLen=pLen;

/* here sIsNull == true, qIsNull == false */

assert (qIsNull && qLen < tAlloc)

strcpy(t ,q); ...

The asserted condition for second strcpy fails :-(

After the first strcpy, the variables qIsNull and qLen are not updated.

=⇒ need further variables for keeping track of overlaps between strings.
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Putting together

The required list of variables:

sAlloc space allocated for string ccodes

sIsNull whether string s is null terminated

sLen length of string s

s overlaps t whether strings s and t point inside the same allocated buffer

s diff t amount of overlap between strings s and t

s overlaps t is same as t overlaps s.

s diff t = -t diff s.
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Schema for instrumenting the C code.

C statement =⇒

assert (condition)

C statement

update statements

Clean program: all the string operations have a well defined output (according

to standard specifications.)

The instrumentation preserves the bahaviour of clean C programs.

In a program is unclean, the condition for the corresponding statement is

violated at some time during execution.
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Allocation

C statement

char s [20];

condition

true

update

sAlloc = 20;

sIsNull = false;

FOREACH a

a overlaps s = false

No safety conditions required.

The string is not null-terminated and has no overlap with any other string.
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Allocation

p = malloc(exp) true

if (p)

pAlloc = exp;

else pAlloc = 0;

pIsNull = false;

FOREACH a

a overlaps p = false;

If allocation fails then no space is allocated for the string.
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Constant string assignment

s = ”some string”; true

sAlloc = 12;

sIsNull = true;

sLen = 11;

FOREACH a

s overlaps a = false;

No assertion conditions.

The string is null terminated and has no overlap with other strings.

Safe even with other pointers to the same string constant, as no updates are

allowed in this region of the memory.
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Pointer arithmetic For simplicity consider only exp ≥ 0

C statement

p = q + exp;

condition

exp <= qAlloc

update

pAlloc = qAlloc - exp;

p overlaps q = true; p diff q = exp;

FOREACH a

p overlaps a = q overlaps a;

p diff a = q diff a + exp;

...
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...

if (qIsNull && qLen >= exp) {

pIsNull = true; pLen = qLen - exp;

} else RECOMPUTE (p);

#define RECOMPUTE (s)

sLen = strlen(s);

sIsNull = (sLen < sAlloc ? true : false)

/∗ however strlen cannot be analyzed precisely! ∗/

a q p

pa q

0

0 0

case 1

case 2
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String update We consider only i ≥ 0

C statement

s [ i ] = exp;

condition

i < sAlloc

Update

if (exp == 0) {

if (!sIsNull || sLen > i) {

sIsNull = true;

sLen = i;

}

FOREACH a

DESTRUCTIVE UPDATE (a,s)

}

s[0]

0

s[i]

s[0]

0

s[i]

case 1

case 2

50



else {

if (sIsNull && i == sLen)

RECOMPUTE (s);

FOREACH a

DESTRUCTIVE UPDATE (a,s);

}

s[0] s[i]

0
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DESTRUCTIVE UPDATE

The string s has been modified and variables sIsNull and sLen have been

updated. The corresponding variables for overlapping strings need to be

updated.

#define DESTRUCTIVE UPDATE (a,s)

if (a overlaps s)

if (sIsNull && a diff s <= sLen &&

(!aIsNull || a diff s >= −aLen)) {

aIsNull = true;

aLen = sLen − a diff s;

} else RECOMPUTE (a);

as

0

s

0

a

old aLen
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Library functions: strcpy

C statement

strcpy (s , t );

condition

tIsNull & tLen < sAlloc

update

sIsNull = true;

sLen = tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

The copied string should be null terminated and the destination should have

enough space.
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Library functions: strcat

C statement

strcat (s , t );

condition

sIsNull && tIsNull

&& tLen + sLen < sAlloc

update

sLen = sLen + tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

Both the source and destination strings should be null terminated before

concatenation.

Normal functions: to be discussed.

54



Library functions: strcat

C statement

strcat (s , t );

condition

sIsNull && tIsNull

&& tLen + sLen < sAlloc

update

sLen = sLen + tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

Both the source and destination strings should be null terminated before

concatenation.

Normal functions: to be discussed.
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Given a C program, we have shown how to compute an instrumented C

program which preserves the semantics.

If the original C program is clean then the instrumented C program has the

same behaviour and all assertions always hold.

If the original C program has an unclean expression then the corresponding

assertion will be false at some time.

Next, we use integer analysis algorithms to check whether any of the assertions

are violated.
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A program state at a certain point of time during the program execution tells

us the value of each program variable at that time.

Execution of an instruction leads to a modification in the program state.

Each program point can be reached several times during execution (loops).

Hence several program states are possible at each program point.

Goal: for each program point, compute an upper approximation of the set of

possible program states.
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Upper approximation of the set of possible states is a safe approximation.

Scenario 1:

char s [20];

for ( i=0; i<10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [ j ] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(9, 18)

Suppose our analysis tells us that at this program point:

0 ≤ i ≤ 9∧0 ≤ j ≤ 18 upper approximation

We conclude that the program is clean safe
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Upper approximation of the set of possible states is a safe approximation.

Scenario 2:

char s [20];

for ( i=0; i<10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [ j ] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(9, 18)

Suppose our analysis tells us that at this program point:

0 ≤ i < ∞∧0 ≤ j < ∞ upper approximation

We conclude that the program is not clean safe
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Upper approximation of the set of possible states is a safe approximation.

Scenario 3:

char s [20];

for ( i=0; i<=10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [ j ] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(10, 20)

We compute upper approximation of the set of possible states.

Hence our analysis should always tell us that j can become 20.

We conclude that the program is not clean safe
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We transform the instrumented program to a program with only integer

variables =⇒ further safe approximation.

e1 is non-integer variable:

e1 = e2; =⇒ ;

e contains non-integer variables and constants:

x = e; =⇒ x = ?;

if (e) s1 else s2 =⇒ if (?) s1 else s2

The expression ? can take all possible values non-deterministically.

(In practice, use a special uninitialized variable in its place.)

Safe approximation: all executions of the original program are still allowed

after approximation.
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Instrumented program

char s [20]; int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

s [ j ] = ’a ’; if (97 == 0) ...

}

Corresponding integer program

int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

if (97 == 0) ...

}
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Instrumented program

char s [20]; int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

s [ j ] = ’a ’; if (97 == 0) ...

}

Corresponding integer program

int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

if (97 == 0) ...

}
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This may involve some safe approximation

Instrumeted program:

char s [10], ∗t; ...

t = ”Hello!”; tAlloc = 7; tIsNull = 0; tLen=6; ...

strcpy (s , t ); ...sLen=tLen

if (s[0]==72) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}

Integer program:

... int any;

tAlloc = 7; tIsNull = 0; tLen=6; ...

...sLen=tLen

if (any ) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}
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This may involve some safe approximation

Instrumeted program:

char s [10], ∗t; ...

t = ”Hello!”; tAlloc = 7; tIsNull = 0; tLen=6; ...

strcpy (s , t ); ...sLen=tLen

if (s[0]==72) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}

Integer program:

... int any;

tAlloc = 7; tIsNull = 0; tLen=6; ...

...sLen=tLen

if (any ) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}
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Program analysis for integers relations

Our methodology:

Program

Analysis problem

Constraints/equations

Precise analysis interpretation

Constraints/equations
over simpler domain

Approximate analysis

abstract

Precise analysis: what values are taken by

variable x at a certain

program point?

infinite domain: Z

Approximate analysis: does variable x ever take a

negative value at a certain

program point?

finite domain: {+,−, 0}
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We consider a set Vars of variables ranging over integers.

Program consists of statements of the form

NOP ;

Assignments x = e;

Conditions if (e) s1 else s2

Jumps goto L

While and for loops: translated using conditions and goto statements.
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We represent programs using control flow graphs (CFGs).

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

Distinguished start and stop nodes.

Edges k are of the form (u, l, v)

where u and v are nodes and label l

is an assignment or a condition.
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The set of possible states state of the program is

S = Vars → Z

The evaluation of an arithmetic expression e under state ρ ∈ S is denoted

[[e]] ρ : Z

An edge k = (u, l, v) induces a partial transformation on program states. The

transformation depends only on the label l.

[[k]] ρ = [[l]] ρ

where [[l]] : S → S

[[;]] ρ = ρ;

[[x = e;]] ρ = ρ ⊕ {x 7→ [[e]] ρ}

[[e1 ≥ e2]] ρ = ρ if [[e1]] ρ ≥ [[e2]] ρ
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A path π is a sequence of consequetive edges in the CFG.

u0 u1

l2 ln−1

un

l1 ln... un−1

π = k1, . . . , kn where each ki is of the form (ui−1, li, ui).

We write π : u0 →∗ un

The transformation induced by a path is the composition of the

transformations induced by the edges.

[[π]] = [[kn]] ◦ . . . ◦ [[k1]]

Each node can be reached through possibly infinitely many paths, leading to

infinitely many different states at each program point.

We are interested in the set of all such states at each program point.
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Suppose we know that a set V of states is possible at a node u.

By following an edge k = (u, , v), a new set of states becomes possible at node

v. This set is denoted [[k]]] V = [[l]]] V : 2S → 2S .

We define abstract transformation

[[l]]] V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

As before, [[k1, . . . , kn]]] V = ([[kn]]] ◦ . . . ◦ [[k1]]
] )V .

At the start node, all states are possible.

For each node v we want to compute the set

V∗[v] =
⋃
{[[π]]] S | π : start →∗ v}
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Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]

0 −∞ < i, j < ∞

1 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20

How to compute the sets V∗[v] in general?

In general they are not computable!
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Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]
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∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20
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In general they are not computable!
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Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]

0 −∞ < i, j < ∞

1 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20

How to compute the sets V∗[v] in general?

In general they are not computable!
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We set up a constraint system.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[0]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[0]

V[4] ⊇ [[i > 10]] V[1]

The least solution (wrt ⊆) of the constraints is exactly V∗.
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We set up a constraint system.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[0]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[0]

V[4] ⊇ [[i > 10]] V[1]

The least solution (wrt ⊆) of the constraints is exactly V∗.
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The least solution (wrt ⊆) of the constraints is exactly V∗.

Is this always true?

Does such a constraint system always have a least solution?

Is it computable? Efficiently?
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An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅

Z × Z

V[1] ∅

{0} × Z {0, 1} × Z

V[2] ∅

{0} × Z {0, 1} × Z . . .

V[3] ∅

{(0, 0)} {(0, 0), (1, 2)}

V[4] ∅
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An idea: do iterative computation of reachable states.
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Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.

start

0

1 2

3

4 5
stop

i < 0 i ≥ 0

i > 10

i ≤ 10

i > 10

i ≤ 10

i = i + 1; i = i + 1;

0 ∅ Z Z

1 ∅ Z
−

Z

2 ∅ Z
+

Z
+

3 ∅ Z
+

Z
+

4 ∅ Z
−

Z

5 ∅ Z
+

Z
+

Interpretation of our result:

the values of i at node 1 is included in Z

the values of i at node 2 is included in Z
+

This information we obtain is accurate.
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In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

We require an ordering v on the elements of this domain.

∅ v Z
− ∅ v Z

+
Z
− v Z Z

+ v Z

Read x v y as ”y is imprecise information compared to x”.

We further require operations like least upper bounds.

Z
− t Z

+ = Z
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+
Z
− v Z Z

+ v Z

Read x v y as ”y is imprecise information compared to x”.

We further require operations like least upper bounds.

Z
− t Z

+ = Z
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Recall: a set D with relation v is a partial order if the following conditions

hold for all x, y, z ∈ D.

• Reflexivity: x v x.

• Antisymmetry: x v y and y v x then x = y.

• Transitivity: if x v y and y v z then x v z.
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An element d ∈ D is called an upper bound of a set X ⊆ D if x v d for all

x ∈ X.

d ∈ D is called least upper bound of X ⊆ D if

• d is an upper bound of X

• d v d′ for every upper bound d′ of X

A partial order (D,v) is called a complete lattice if every X ⊆ D has a least

upper bound
⊔

X.

We write x t y for
⊔
{x, y}.

For (2S ,⊆) we have
⊔

X =
⋃

X.
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Some complete lattices.

>

⊥
∅

Z
+

Z
−

Z

Z
− = {x ∈ Z | x < 0}

Z
+ = {x ∈ Z | x ≥ 0}

Z × Z
+

Z
+ × Z

−
Z
− × Z

+
Z

+ × Z
+

Z
+ × ZZ × Z

−

Z
− × Z

−

Z
− × Z

∅

Z × Z
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An infinite complete lattice : (2Z,⊆).

{0} {1} {2}{−1}

{0,−1} {0, 1} {0, 2} {1, 2}

{0, 1, 2}

∅

Z

...

... ...
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Every complete lattice has

• a top element: > =
⊔

D

• a bottom element: ⊥ =
⊔

∅

Further every X ⊆ D has a greatest lower bound
d

X.

For (2S ,⊆) we have
d

X =
⋂

X.

Consider the set of lower bounds of X:

L = {l ∈ D | ∀x ∈ X, l ≤ x}

and define

g =
⊔

L

Claim: g is the greatest lower bound of X.
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(1)

g is a lower bound of X:

Consider any x ∈ X.

l ≤ x for all l ∈ L, i.e. x is an upper bound of L.

Hence g =
⊔

L v x.

(2)

g is the greatest lower bound of X:

Let l be any other lower bound of X.

Then l ∈ L.

Hence l v
⊔

X = g.
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A function f : D1 → D2 is called monotone if:

f(x) v f(y) whenever x v y

The function f : Z → Z defined as f(x) = x + 1 is monotone.

Note: (Z,≤) is not a complete lattice.

The transformations induced by the program edges are monotone:

Recall: [[l]]] : 2S → 2S

[[l]]] V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

Hence if V1 ⊆ V2 then [[l]]] V1 ⊆ [[l]]] V2.
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Some facts:

If f : D1 → D2 and g : D2 : D3 are monotone then the composition

g ◦ f : D1 → D3 is monotone.

If D2 is a complete lattice then the set [D1 → D2] of monotone functions

f : D1 → D2 is a complete lattice,

where f v g iff f(x) v g(x) for all x ∈ D1.

For F ⊆ [D1 → D2] we have
⊔

F = f with f(x) =
⊔
{g(x) | g ∈ F} .
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For our program analysis problem, we want the least solution of the constraint

system

V[0] ⊇ S (0 is the start node)

V[v] ⊇ [[l]]] V[u] for every edge (u, l, v).

We have the domain D = 2S . Choose a variable for each set V[v].

We have a constraint system of the form

xi w fi(x1, . . . , xn) (1 ≤ i ≤ n)

Since D is a lattice, D
n is also a lattice where

(d1, . . . , dn) v (d′1, . . . , d
′
n) iff di v d′i for 1 ≤ i ≤ n

The functions fi : D
n → D are monotone.
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Define F : D
n → D

n as

F (y) = (f1(y), . . . , fn(y)) where y = (x1, . . . , xn)

F is also monotone.

We need least solution of y w F (y).

Idea: use iteration

Start with the least element ⊥ and compute the sequence

⊥, F (⊥), F 2(⊥), F 3(⊥), . . ..

Do we always reach the least solution in this way?
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Example: the complete lattice of Booleans: D = {⊥,>}.

Constraint system:

x w y∨z

y w x∧y∧z

z w >

The iteration:

x ⊥

⊥ > >

y ⊥

⊥ ⊥ ⊥

z ⊥

> > >

We have F 2(⊥) = F 3(⊥).
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Such an iteration produces an ascending chain

⊥ v F (⊥) v F 2(⊥) v F 3(⊥) . . .

By induction: (1) Clearly ⊥ v F (⊥).

(2) Further if F i(⊥) v F i+1(⊥) then by monotonicity

F i+1(⊥) v F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) v x.

Is it also the least solution of F (x) v x ?

Yes ...

86



Such an iteration produces an ascending chain

⊥ v F (⊥) v F 2(⊥) v F 3(⊥) . . .

By induction: (1) Clearly ⊥ v F (⊥).

(2) Further if F i(⊥) v F i+1(⊥) then by monotonicity

F i+1(⊥) v F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) v x.

Is it also the least solution of F (x) v x ?

Yes ...

86-a



Such an iteration produces an ascending chain

⊥ v F (⊥) v F 2(⊥) v F 3(⊥) . . .

By induction: (1) Clearly ⊥ v F (⊥).

(2) Further if F i(⊥) v F i+1(⊥) then by monotonicity

F i+1(⊥) v F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) v x.

Is it also the least solution of F (x) v x ?

Yes ...

86-b



Such an iteration produces an ascending chain

⊥ v F (⊥) v F 2(⊥) v F 3(⊥) . . .

By induction: (1) Clearly ⊥ v F (⊥).

(2) Further if F i(⊥) v F i+1(⊥) then by monotonicity

F i+1(⊥) v F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) v x.

Is it also the least solution of F (x) v x ?

Yes ...

86-c


