
Claim: If a is a solution of F (x) v x then F k(⊥) v a for all k.

By induction: Clearly ⊥ v a

Further if F k(⊥) v a then by monotonicity we have

F k+1(⊥) v F (a) v a.

Hence if F k+1(⊥) = F k(⊥) for any k then F k(⊥) is least solution of F (x) v x.

Such a k always exists if the lattice is finite.

What in case of infinite lattices?
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start

0

stop

i=0;

i=i+2;1

Constraint system:

V[0] ⊇ Z

V[1] ⊇ {0} ∪ {x+2 | x ∈ V[1]}

The least solution:

V[0] = Z and V[1] = {2n | n ≥ 0}.

Iteration doesn’t terminate:

⊥ F (⊥) F 2(⊥) F 3(⊥)

V[0] ∅ Z Z Z . . .

V[1] ∅ {0} {0, 2} {0, 2, 4}
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Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D → D has a least

fixpoint a.

Fixpoint: an element x such that f(x) = x.

Prefixpoint: an element x such that f(x) v x.

Let P = {x ∈ D | f(x) v x} (the set of prefixpoints).

The least fixpoint of f is a =
d

P .

(1) a ∈ P :

f(a) v f(d) v d for all d ∈ P .

=⇒ f(a) is a lower bound of P .

=⇒ f(a) v a.
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=⇒ a is the least prefixpoint.

(2) f(a) = a:

f(a) v a, from (1)

=⇒ f2(a) v f(a), by monotonicity

=⇒ f(a) ∈ P

=⇒ a v f(a)

Hence a is the least prefixpoint and is also a fixpoint.

Hence a is also the least fixpoint.
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Example 1: Consider partial order D1 = N with 0 v 1 v 2 v . . ..

The function f(x) = x+1 is monotonic.

However it has no fixpoint.

Actually D1 is not a complete lattice.

Example 2: Now we consider D2 = N ∪ {∞}.

This is a complete lattice.

The function f(x) = x+1 is again monotonic.

The only fixpoint is ∞: ∞+1 = ∞.
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Abstract Interpretation: Cousot, Cousot 1977

We use a suitable complete lattice as the domain of abstract values.

Example: intervals as abstract values:

start

0

1

stop

23

i ≤ 10i > 10

i = 0;

i = i + 2;

I[0] ⊥ [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

I[1] ⊥ [0, 0] [0, 2] [0, 12] [0, 12]

I[2] ⊥ [0, 0] [0, 2] . . . [0, 10] [0, 10]

I[3] ⊥ ⊥ ⊥ [12, 12] [12, 12]

The analysis guarantees e.g. that at node 1 the value of i is always in the

interval [0, 12].
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We have the set of concrete states S = (Vars → Z).

We choose a complete lattice D of abstract states.

We define an abstraction relation

∆ : S × D

with the condition that

ρ ∆ a ∧ a v b =⇒ ρ ∆ b

bv

∆

ρ

a

∆

The concretization function: γ(a) = {ρ | ρ ∆ a}.
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Example: For a program on two integer variables, Vars = {x, y}.

The concrete states are from the set S = (Vars → Z) (or equivalently Z
2).

For interval analysis, we choose the complete lattice

DI = (Vars → I)⊥ = (Vars → I) ∪ {⊥}

where I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞}, l ≤ u} is the set of intervals.

l1 u1

u2l2

Partial order on I: [l1, u1] v [l2, u2] iff l1 ≥ l2 and u1 ≤ u2

(As usual, −∞ v n v ∞ for all n ∈ Z.)
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Partial order on Vars → I: D1 v D2 iff D1(x) v D2(x).

Extension to (Vars → I)⊥: ⊥ v D for all D.

(Vars → I)⊥ is a complete lattice. (Vars → I) is not.

In particular we define [l1, u1] t [l2, u2] = [l1 u l2, u1 t u2].

l2

u1l1

u2

u1 t u2
l1 u l2

⊥ represents the “unreachable state”: maps every variable to the “empty

interval”.
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The abstraction relation:

ρ ∆ D iff D 6= ⊥ and ρ(x) ∆ D(x).

where n ∆ [l, u] iff l ≤ n ≤ u.

This satisfies the required condition:

Suppose ρ ∆ D1 and D1 v D2.

=⇒ D1 6= ⊥ and D2 6= ⊥.

ρ(x) ∆ D1(x) and D1(x) v D2(x) for each x.

=⇒ ρ(x) ∆ D1(x) for each x.

ρ(x)

D1(x)

D2(x)

.
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The concretization function:

γ(⊥) = {}

γ(D) = {ρ | ρ(x) ∆ D(x)}, for D 6= ⊥

γ({x 7→ [3, 5], y 7→ [0, 7]}) = {{x 7→ 3, y 7→ 0}, {x 7→ 3, y 7→ 1},

. . . {x 7→ 3, y 7→ 7}

. . . {x 7→ 5, y 7→ 0} . . . {x 7→ 5, y 7→ 7}}
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Abstraction of the partial transformation induced by edges.

Recall the edges k = (u, l, v) induce a partial transformation on concrete states:

[[k]] = [[l]] : S → S

Now on our chosen domain D we define a monotonic abstract transformation:

[[k]]] = [[l]]] : D → D

The abstract transformation should simulate the concrete transformation:

if ρ ∆ a and [[l]] ρ is defined then [[l]] ρ ∆ [[l]]] a.

ρ

a [[k]]]

[[k]]

∆ ∆
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Abstract transformation for interval analysis.

For concrete operators � we define monotonic abstract operators �] such that

x1 ∆ a1 ∧ . . . ∧ xn ∆ an =⇒ �(x1, . . . , xn) ∆ �](a1, . . . , an)

addition: [l1, u1] +] [l2, u2] = [l1 + l2, u1 + u2].

+ ∞ = ∞

+ −∞ = ∞

// ∞ + −∞ is undefined.

substraction: −] [l, u] = [−u,−l]
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Multiplication: [l1, u1] ∗] [l2, u2] = [m,n] where

m = l1l2 u l1u2 u l2u1 u l2u2

n = l1l2 t l1u2 t l2u1 t l2u2

Example: [1, 3] ∗] [5, 8] = [5, 24]

[−1, 3] ∗] [5, 8] = [−8, 24]

[−1, 3] ∗] [−5, 8] = [−15, 24]

[−1, 3] ∗] [−5,−8] = [−24, 5]
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Equality test:

[l1, u1] ==] [l2, u2] =







[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 or u2 < l1

[0, 1] otherwise

Example:

[7, 7] ==] [7, 7] = [1, 1]

[1, 7] ==] [9, 12] = [0, 0]

[1, 7] ==] [1, 7] = [0, 1]
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Inequality test:

[l1, u1] <] [l2, u2] =







[1, 1] if u1 < l2

[0, 0] if u2 < l1

[0, 1] otherwise

Example:

[1, 7] <] [9, 12] = [1, 1]

[9, 12] <] [1, 7] = [0, 0]

[1, 7] <] [6, 8] = [0, 1]
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Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]] D = D(x)

[[n]]] D = [n, n]

[[�(e1, . . . , en)]]] D = �]([[e1]]
] D, . . . , [[en]]] D)

Fact: ρ ∆ D and [[e]] ρ is defined =⇒ [[e]] ρ ∆ [[e]]] D.

Case e is x: since ρ ∆ D hence [[x]] ρ = ρ(x) ∆ D(x) = [[x]]] D

Case e is n: [[n]] ρ = n ∆ [n, n] = [[n]]] D

Case e is �(e1, . . . , en) : since each [[ei]] ρ ∆ [[ei]]
] D hence

[[�(e1, . . . , en)]] ρ = �([[e1]] ρ, . . . , [[en]] ρ)

∆

�]([[e1]]
] D, . . . , [[en]]] D) = [[�](e1, . . . , en)]]] D
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Finally, the monotonic abstract transformations induced by edges

[[l]]] ⊥ = ⊥

For D 6= ⊥, [[;]]] D = D

[[x = e;]]] D = D ⊕ {x 7→ [[e]]] D}

[[e]]] D =







⊥ if [[e]]] D = [0, 0]

D otherwise

Next we must check the condition:

ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]] D = D1 =⇒ ρ1 ∆ D1.

Clearly D 6= ⊥ here.
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To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]] D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

Case l is x = e;

ρ1 = ρ ⊕ {x 7→ [[e]] ρ} and D1 = D ⊕ {x 7→ [[e]]] D}

As [[e]] ρ ∆ [[e]]] D hence ρ1 ∆ D1.

Case e is some condition e

Since the tranformation [[e]] ρ is defined,

hence the expression evaluation [[e]] ρ 6= 0, and ρ1 = ρ.

Since ρ ∆ D,

hence the abstract expression evaluation [[e]]] D 6= [0, 0], and D1 = D.
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Recall, for a path π = k1 . . . kn,

[[π]] ρ = ([[kn]] ◦ . . . ◦ [[k1]] )ρ

[[π]]] D = ([[kn]]] ◦ . . . ◦ [[k1]]
] )D

We conclude from above:

if ρ ∆ D and [[π]] ρ is defined then [[π]] ρ ∆ [[π]]] D.

ρ

∆

D

∆ ∆ ∆ ∆ ∆

[[k2]]
]

[[kn]][[k3]][[k2]][[k1]]

[[k3]]
] [[kn]]][[k1]]

]

...
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Merge over All Paths (MOP):

D∗[v] =
⊔

{[[π]]] > | π : start →∗ v}

For any initial concrete state ρ and path π : start →∗ v, if [[π]] ρ is defined then

[[π]] ρ ∆ D∗[v]

Hence D∗[v] abstracts all states possible at node v.

To compute it, we use the constraint system D∗.

D[start] w >

D[v] w [[k]]] D[u] for edge k = (u, l, v)

How are the two related?
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Merge over All Paths (MOP):

D∗[v] =
⊔

{[[π]]] D0 | π : start →∗ v}

Theorem: Kam,Ullman 1975

Let D be the smallest solution of the constraint system

D[start] w D0

D[v] w [[k]]] D[u] for edge k = (u, l, v)

Then we have

D[v] w D∗[v] for every v

In other words: D[v] w [[π]]] D0 for every π : start →∗ v
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Proof: induction on the length of π:

Case π = ε (empty path).

[[π]]] D0 = D0 v D[start]

Induction step: π = π′k for k = (u, l, v).

[[π′]]] D0 v D[u] induction hypothesis

[[π]]] D0 = [[k]]] ([[π′]]] D0)

v [[k]]] (D[u]) monotonicity

v D[v] D is a solution
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Proof: induction on the length of π:
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Question:

Does the constraint system give us only an upper bound ?

Answer:

In general yes.

Now let’s assume that all the functions [[k]]] are distributive . . .
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A function f : D1 → D2 is called

• distributive, when f(
⊔

X) =
⊔
{f(x) | x ∈ X} for all ∅ 6= X ⊆ D1.

• strict, when f(⊥) = ⊥.

• total distributive, when f is strict and distributive.

Example 1: D1 = D2 = (2U ,⊆) for some set U .

f(x) = x ∩ A ∪ B for some A,B ⊆ U .

Strictness: f(∅) = B =⇒ strict only if B = ∅.

Distributivity:

f(x ∪ y) = (x ∪ y) ∩ A ∪ B

= (x ∩ A) ∪ (y ∩ A) ∪ B

= (x ∩ A ∪ B) ∪ (y ∩ A ∪ B) :-)
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Strictness: f(∅) = B =⇒ strict only if B = ∅.

Distributivity:

f(x ∪ y) = (x ∪ y) ∩ A ∪ B

= (x ∩ A) ∪ (y ∩ A) ∪ B

= (x ∩ A ∪ B) ∪ (y ∩ A ∪ B) :-)
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A function f : D1 → D2 is called

• distributive, when f(
⊔

X) =
⊔
{f(x) | x ∈ X} for all ∅ 6= X ⊆ D1.

• strict, when f(⊥) = ⊥.

• total distributive, when f is strict and distributive.

Example 1: D1 = D2 = (2U ,⊆) for some set U .

f(x) = x ∩ A ∪ B for some A,B ⊆ U .

Strictness: f(∅) = B =⇒ strict only if B = ∅.

Distributivity:

f(x ∪ y) = (x ∪ y) ∩ A ∪ B

= (x ∩ A) ∪ (y ∩ A) ∪ B

= (x ∩ A ∪ B) ∪ (y ∩ A ∪ B) :-)
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