Claim: If a is a solution of F(x) C = then F*(L) C a for all k.

By induction: Clearly L C a

Further if F¥(L) T a then by monotonicity we have
FL(1) E F(a) C a.

87

Claim: If a is a solution of F(x) C = then F*(L) C a for all k.

By induction: Clearly L C a

Further if F¥(L) T a then by monotonicity we have
FL(1) E F(a) C a.

Hence if F*¥T1(1) = F*(L) for any k then F*(L) is least solution of F(z) C .

Such a k always exists if the lattice is finite.

What in case of infinite lattices?

R7-a

\start

Constraint system:

V0] D Z
V] D{0}u{z+2]|x € V|l]}

The least solution:

V[0] =7Z and V[1] = {2n | n > 0}.

L F(L) | F?(L) | F?(L)
Vol 0| Z Z 7
V]| 0| {0} | {0,2} | {0,2,4}

88

Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D — DD has a least

fixpoint a.

Fixpoint: an element x such that f(x) = .

Prefixpoint: an element x such that f(x) C x.

89

Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D — ID has a least

fixpoint a.

Fixpoint: an element x such that f(x) = .

Prefixpoint: an element x such that f(x) C x.
Let P={z €D| f(z) C x} (the set of prefixpoints).
The least fixpoint of f is a =[] P.

(1) ae€P:
fla) E f(d) Ed for all d € P.
— f(a) is a lower bound of P.
— f(a) C a.

89-a

— a is the least prefixpoint.

) fla)=a
f(a) € a, from (1)
. f?(a) C f(a), by monotonicity
— fla) € P
— aC f(a)

Hence a is the least prefixpoint and is also a fixpoint.

Hence a is also the least fixpoint.

90

Example 1: Consider partial order D = NwithOC1C2C ...,
The function f(x) = x+1 is monotonic.
However it has no fixpoint.

Actually D; is not a complete lattice.

91

Example 1: Consider partial order D = NwithOC1C2C ...,
The function f(x) = x+1 is monotonic.
However it has no fixpoint.

Actually D; is not a complete lattice.

Example 2: Now we consider Dy = N U {oo}.
This is a complete lattice.
The function f(x) = x+1 is again monotonic.

The only fixpoint is co: co+1 = oc.

91-b

Abstract Interpretation: Cousot, Cousot 1977
We use a suitable complete lattice as the domain of abstract values.

Example: intervals as abstract values:

\start
IO 1 :—O0,00] :—O0,00] :—O0,00] :—O0,00]
0] L 0,00 [0,2) [0,12 [0,12]
7[2] L [0,0] 0,2]... [0,10] 0, 10]
73 L L 1 12,12] [12,12]

The analysis guarantees e.g. that at node 1 the value of ¢ is always in the
interval [0, 12].

92

We have the set of concrete states S = (Vars — Z).
We choose a complete lattice D of abstract states.

We define an abstraction relation
A SxD
with the condition that
p A a N alb = p A Db

a = b
A N
0
The concretization function: va)={p|p A a}.

93

Example: For a program on two integer variables, Vars = {x, y}.

The concrete states are from the set S = (Vars — Z) (or equivalently Z?2).

For interval analysis, we choose the complete lattice
Dy = (Vars = 1), = (Vars = 1) U {L}

where I = {[l,u] |l € ZU {—o0},u € ZU {x},l < u} is the set of intervals.

1 U1

lo U2

Partial order on I: [l1,u1] E [lo,us] iff [> ls and uy < ug

(As usual, —oo En C oo for all n € Z.)

94

Partial order on Vars — I: D; C Dy iff Di(2z) E Dao(x).
Extension to (Vars = 1);: L C D for all D.

(Vars —), is a complete lattice. (Vars — I) is not.

In particular we define [l1,u1] U [lo, ua| = [l1 Mo, u1 L us).
l1 Mo w1 L ue
l1 U1
lo U2

L represents the “unreachable state”: maps every variable to the “empty

interval”.

95

The abstraction relation:
p A D iff D#1 and p(z) A D(x).

where n A [l u] iff | <n <u.

96

The abstraction relation:
p A D iff D#1 and p(z) A D(x).

where n A [l u] iff | <n <u.

This satisfies the required condition:

Suppose p A Dj and D C Ds.
— Dy # 1L and Dy # 1.

p(r) A Di(x) and Di(x) C Dy(x) for each .
— p(r) A Di(x) for each x.

“p(z)

96-a

The concretization function:

(L) = {7
YD) =1plp(x) A D(x)},

7({37 — [375]7y — [077]}) —

for D #£ L

{{z —3,y— 0} {z 3,y —1}
L Ar— 3,y — T}
o Ar—=b5y—0}.. {r—5y—T}}

97

Abstraction of the partial transformation induced by edges.

Recall the edges k& = (u,l,v) induce a partial transformation on concrete states:

k] =[] :S— S

Now on our chosen domain D we define a monotonic abstract transformation:
[K]¥ =[] :D—D

The abstract transformation should simulate the concrete transformation:
if p A a and [I] pisdefined then [I]p A [i]* a.

a [%]°

Y

98

Abstract transformation for interval analysis.

For concrete operators [we define monotonic abstract operators 0% such that
1 A ay A ATy A a, = 0O(x1,...,2,) A Oag,...,ap)

addition: [ll, ul] -I—ﬁ [lg, UQ] = [ll + lo,u; + UQ].
_ + o0 = OO
_ + —00 = OO

// o0 + —o0 is undefined.

substraction: —t {1, 4] = |—u, —I]

99

Multiplication: [l,u1] *F [lo,us] = [m,n] where

m = l1lo T l{us M lsuq M lous
n = l1lo U [us U louq U lous
Example: [1,3] *# [5,8] =[5, 24]
—1,3] *F [5,8] =[-8, 24]
—1,3] % [-5,8] =[-15,24]
—1,3] ** [-5,-8] =[-24,5]

100

Equality test:
:1, 1: if ll = U1 = l2 — U2

[llaul] == [l27u2] = < :0,0: if up < lo or us < g

0,1] otherwise

Example:
7,7 == [7,7 =11
1,7 ==F [9,12] =10,0]
1,7 ==* [1,7 =]0,1

101

Inequality test:

1, u1] <! [lg,ug] =

Example:

1, 7]
9, 12]

1,7

\

1,1] if
0,0] if
0,1] otherwise
<t 19,12] =[1,1]
<t 1,77 =10,0]
<t 16,8] =10,1]

uyp < lo

uo < lq

102

Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[#]* D = [n,n]
[O(er,...,en)]F D =0O[e1]? D, ..., [en]* D)

103

Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[n]F D = [n,n]
[O(er,...,e)]* D =0O4[el]? D,...,[e.]* D)
Fact: p A D and [e] pis defined = [e] p A [e]* D.

103-a

Monotonic abstract evaluation of expressions

For D # 1,

Fact:

Case e 1s x:

[z]F D = D(x)

[n]F D = [n,n]

[O(er,...,ex)]F D =0[e1]? D, ..., [en]* D)

p A D and [e] pis defined = [e] p A [e]* D.
since p A D hence [2] p=p(z) A D(z)=[z]* D

103-b

Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[n]F D = [n,n]
[O(er,...,e)]* D =0O4[el]? D,...,[e.]* D)
Fact: p A D and [e] pis defined = [e] p A [e]* D.

Case e is x: since p A D hence [2] p=p(z) A D(z)=[z]* D
Case e is n: [n] p=n A [n,n]=[n]!D

103-c

Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[n]F D = [n,n]
[O(er,...,ex)]F D =0[e1]? D, ..., [en]* D)

Fact: p A D and [e] pis defined = [e] p A [e]* D.
Case e is x: since p A D hence [2] p=p(z) A D(z)=[z]* D
Case e is n: [n] p=n A [n,n]=[n]!D

Case e is L(eq,...,ey,) : since each [e;] p A [e;]* D hence

[Oers - en)l o =0([ea] p,- .- en] p)
A

D% ([e1]* D, ..., [ex]* D) =[O%ey,...,e,)]* D

103-d

Finally, the monotonic abstract transformations induced by edges

L =1L
For D # 1, LD =D
[r=¢e]* D =D {zw [e]* D}

)
1 iffe]* D=1]0,0
D otherwise

\

104

Finally, the monotonic abstract transformations induced by edges

IF L =1
For D # 1, LD =D
[+=e]" D =D {zw [e]f D}

)
1 iffe]* D=1]0,0
D otherwise

\

Next we must check the condition:
p A D AN [llp=p1 N [II* D=D; = p; A Djy.

104-a

Finally, the monotonic abstract transformations induced by edges

F L =1
For D # 1, LD =D
[+=e]" D =D {zw [e]f D}

[e]* D =4

(

L if [e]* D =10,0]

D otherwise

\

Next we must check the condition:

p AD A [llp=p1 N [II! D=Dy = p1 A Dy.

Clearly D # L here.

104-b

Tocheck: p A D A [llp=p1 N [I]*D=Dy = p1 A D.
Case [is ;

pr=p A D=D.

105

To check: p A D A [llp=p1 N [I]*D=Dy = p1 A D.
Case [is ;

pr=p A D=D.
Case [is x = e;

pp=p®{z—[e] p} and Di=D&{xw [e]* D}

As [e] p A [e]* D hence pi A Dj.

105-a

To check: p A D AN [llp=p1 N [II* D=D; = p1 A Dj.
Case [is ;
p1=p A D=D;.
Case [is © = ¢;
pr=p®{z—e] p} and Di=D&{zw [e] D}
As [e]p A [e]* D hence p; A Dy.
Case e is some condition e
Since the tranformation [e] p is defined,
hence the expression evaluation [e] p # 0, and p; = p.
Since p A D,
hence the abstract expression evaluation [e]* D # [0,0], and D; = D.

105-b

Recall, for a path m = k1 ...k,
[7] p = ([Fn] o...o[F1])p
[7]* D = ([kn]* o...0[k1]*)D

We conclude from above:
if p A D and [7] pis defined then [7] p A [#]* D.

T A) N) G (9]
p [l [kl [ks) [Fn]

106

Merge over All Paths (MOP):
D*[v] = |_|{[[7T]]1j T |7 start =" v}

For any initial concrete state p and path 7 : start —* v, if [7] p is defined then

[7l A D]

Hence D*|v] abstracts all states possible at node v.

107

Merge over All Paths (MOP):
D*[v] = |_|{[[7T]]1j T |7 start =" v}

For any initial concrete state p and path 7 : start —* v, if [7] p is defined then

[7l A D]

Hence D*|v] abstracts all states possible at node v.

To compute it, we use the constraint system D*.

Dlstart] I T
D] 3 [k]* Dlu] for edge k = (u,l,v)

107-a

Merge over All Paths (MOP):
D*[v] = |_|{[[7T]]1j T |7 start =" v}

For any initial concrete state p and path 7 : start —* v, if [7] p is defined then

[7l A D]

Hence D*|v] abstracts all states possible at node v.

To compute it, we use the constraint system D*.

Dlstart] I T
D] 3 [k]* Dlu] for edge k = (u,l,v)

How are the two related?

107-b

Merge over All Paths (MOP):
D*v] = |_|{[[7T]]1j Dy | 7 start =™ v}

Theorem: Kam,Ullman 1975

Let D be the smallest solution of the constraint system

Dlstart] 3 Dyg
D] 3 [k]* Dlu] for edge k = (u,l,v)

Then we have
Dlv| 3 D*|v] for every v

In other words: D[v] 3 [r]* Dy for every 7 : start —* v

108

Proof: induction on the length of 7:

109

Proof: induction on the length of 7:

Case m = ¢ (empty path).

109-a

Proof: induction on the length of 7:

Case m = ¢ (empty path).
[7]* Dy = Dy C D[start]

109-b

Proof: induction on the length of 7:

Case m = ¢ (empty path).
[7]* Dy = Dy C D[start]

Induction step: m = 7'k for k = (u,l,v).

109-c

Proof: induction on the length of 7:

Case m = ¢ (empty path).
[7]* Dy = Dy C D[start]

Induction step: m = 7'k for k = (u,l,v).

[7']* Dy C Dlu] induction hypothesis
[Do [[/f]]ti ([*']* Do)

C [k]* (D[u)) monotonicity

C D] D is a solution

109-d

Question:

Does the constraint system give us only an upper bound 7

110

Question:

Does the constraint system give us only an upper bound 7

Answer:

In general yes.

110-a

Question:

Does the constraint system give us only an upper bound 7

Answer:

In general yes.

Now let’s assume that all the functions [k]* are distributive ...

110-b

A function f : 1Dy — Dy is called
e distributive, when f(| | X) = |{f(z) | x € X} for all) # X C Djs.
e strict, when f(L)= L.

e total distributive, when f is strict and distributive.

111

A function f : 1Dy — Dy is called
e distributive, when f(| | X) = |{f(z) | x € X} for all) # X C Djs.
e strict, when f(L)= L.
e total distributive, when f is strict and distributive.
Dy =Dy = (2Y, C) for some set U.

f(r)=xN AUB for some A,B CU.

111-a

A function f : 1Dy — Dy is called
e distributive, when f(| | X) = |{f(z) | x € X} for all) # X C Djs.
e strict, when f(L)= L.
e total distributive, when f is strict and distributive.
Dy =Dy = (2Y, C) for some set U.
f(r)=xN AUB for some A,B CU.
Strictness: f(()) = B = strict only if B = ().

111-b

A function f : 1Dy — Dy is called

e distributive, when f(| | X) = |{f(z) | x € X} for all) # X C Djs.

e strict, when f(L)= L.
e total distributive, when f is strict and distributive.
Dy =Dy = (2Y, C) for some set U.
f(r)=xN AUB for some A,B CU.
Strictness: f(()) = B = strict only if B = ().
fl(eUy) =(xUy)NAUB
Distributivity: =(zNA)U@YNAUB
=(xNAUB)U(yNAUB)

111-c

