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Another example

public class testclass {

public testclass () { }

public Class testfunction (String s) {

Class c = s.getClass();

return c;

}

}

public java.lang.Class testfunction(java.lang.String); 1 stack slots, 3 registers

0: aload 1

1: invokevirtual #2; //Method java/lang/Object.getClass:()Ljava/lang/Class;

4: astore 2

5: aload 2

6: areturn
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Our analysis on this example

public java.lang.Class testfunction (java.lang.String ); 1 stack slots , 3 registers

// stack, R(0), R(1), R(2)

// ε, (testclass, String, >)

0: aload 1 // String, (testclass, String, >)

1: invokevirtual #2; // Class, (testclass, String, >)

4: astore 2 // ε, (testclass, String, Class)

5: aload 2 // Class, (testclass, String, Class)

6: areturn
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In case of several paths to a node, we need to compute least upper bounds t.

Comparison of abstract stacks:

T1 · . . . · Tn v U1 · . . . · Un iff Ti v Ui for 1 ≤ i ≤ n.

T1 · . . . · Tn t U1 · . . . · Un = T1 t U1 · . . . · Tn t Un

Comparison of abstract register assignments:

R1 v R2 iff R1(i) v R2(i) for 0 ≤ i < Mreg.

(R1 t R2)(n) = R1(n) t R2(n)

Comparison of abstract states

(S1, R1) v (S2, R2) iff S1 v S2 and R1 v R2

(S1, R1) t (S2, R2) = (S1 t S2, R1 t R2)

Also ⊥ v (R,S) and ⊥ v (R,S) = (R,S).
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Initial abstract state: (Sstart, Rstart) where Sstart = ε is the empty stack

and Rstart(0), . . . , Rstart(n−1) are the n arguments, and Rstart(i) = > for i ≥ n

If π : pc1 → pc2 is a path (possibly with loops) from pc1 to pc2 with

corresponding instruction sequence I1, . . . , Ik and

(Ri−1, Si−1)
Ii

// (Si, Ri)

for 1 ≤ i ≤ n then we write π : (S0, R0) → (Sk, Rk).

For every valid location pc we define

Merge Over All Paths (MOP):

S[pc] =
⊔
{(S,R) | π : (Sstart, Rstart) → (S,R)}
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Example

Suppose classes D and E are defined by extending class C, so that D t E = C.

// Int, (D, E)

10: ifle 17 // ε, (D, E)

13: aload 0 // D, (D, E)

14: goto 18 // ε, (D, E)

17: aload 1 // C, (D, E)

18: areturn

(According to our notation, C, (D,E) is the abstract state before the execution

of the instruction at location 18.)
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Another example

// ε, (Int,String)

9: iload 0 // Int, (Int, String)

10: ifle 17 // ε, (Int,String)

13: iload 0 // Int, (Int, String)

14: goto 18 // ε, (Int,String)

17: aload 1 // >, (Int, String)

18: areturn

The bytecode verification fails because the return value is of unknown type.
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public static int factorial ( int ); 2 stack slots , 2 registers

// ε, (Int,>)

0: iconst 1 // Int, (Int,>)

1: istore 1 // ε, (Int, Int)

2: iload 0 // Int, (Int, Int)

3: ifle 16 // ε, (Int, Int)

6: iload 1 // Int, (Int, Int)

7: iload 0 // Int · Int, (Int, Int)

8: imul // Int, (Int, Int)

9: istore 1 // ε, (Int, Int)

10: iinc 0, −1 // ε, (Int, Int)

13: goto 2 // ε, (Int, Int)

16: iload 1 // Int, (Int, Int)

17: ireturn
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Other issues to be tackled in the full Java bytecode language:

• initialization of objects

• exception handling
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Typed Assembly Language (TAL)
Morrisett et al.

• A generic approach to safe compiled code.

• Based on the concept of type safety.

• Use type preserving compilation to transform type safe source code to type

safe compiled code.

• Can be combined with the idea of proof carrying code.
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A first language: TAL-0

Deals with control flow safety: no jumps to arbitrary machine addresses.

Syntax of programs: We assume a fixed finite set of registers:

r ::= registers

r1 | . . . | rk

ν ::= operands

n integer

| l label

| r register

ι ::= instructions

rd := ν

| rd := rs + ν

| if r jump ν

I ::= instruction sequences

jump ν

| ι; I

Operands other than registers are called values (i.e. registers and labels).
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• Instruction sequences have an unconditional jump at the end, and other

instructions before.

• As yet, no infinite memory (except for code).

An example for computing product: r4 contains the return address

prod : r3 := 0;

jump loop

loop : if r1 jump done;

r3 := r2 + r3;

r1 := r1 + −1;

jump loop

done : jump r4

The example has three instruction

sequences, and a label correspond-

ing to each of them.
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Evaluation: the TAL-0 abstract machine

• the abstract machine contains the code and data.

• an evaluation step changes the state (code and data) of the abstract machine.

R ::= register files

{r1 7→ ν1, . . . , rk 7→ νk} (each νi is a value)

h ::= heap values

I instruction sequences

H ::= heaps

{l1 7→ h1, . . . lm 7→ hm}

M ::= abstract machine states

(H,R, I) (I is the current instruction sequence being executed)
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• A register file R maps each register r to some value (integer or label) R(r).

• A heap H is a partial map: H maps some labels l to heap values H(l).

The previous example has three instruction sequences

I1 = r3 := 0; jump loop

I2 = if r1 jump done; r3 := r2 + r3; r1 := r1 + −1; jump loop

I3 = jump r4

We have the heap H0 = {prod 7→ I1, loop 7→ I2, done 7→ I3}.

The starting state of the machine is supposed to be of the form

M0 = (H0, R0, I1)

where R0(r1) = n and R0(r2) = m are integers and R0(r4) is a label.

A possible execution sequence: . . .
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H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0, r4 7→ l}, r3 := 0; jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, I2

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, r3 := r2 + r3; r1 := r1 + −1; jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 2 r4 7→ l}, r1 := r1 + −1; jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, I2

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, r3 := r2 + r3; r1 := r1 + −1; jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 4 r4 7→ l}, r1 := r1 + −1; jump loop

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, jump loop

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, I2

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, jump r4
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As usual, we formalize this using evaluation rules.

H(R̂(ν)) = I
E-Jump)

(H,R, jump ν) −→ (H,R, I)

where the lookup function R̂ returns the value corresponding to an operand:

R̂(r)=R(r)

R̂(n)=n

R̂(l)=l

The JUMP instruction loads a new instruction sequence which should then be

executed.

(The machine is stuck if R̂(ν) is not a label.)
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Otherwise, we consume one instruction from the current instruction sequence.

The MOV and ADD instructions modify the register file.

(H,R, rd := ν; I) −→ (H,R ⊕ {rd 7→ R̂(ν)}, I) (E-Mov)

R(rs) = n1 R̂(ν) = n2
(E-Add)

(H,R, rd := rs + ν; I) −→ (H,R ⊕ {rd 7→ n1 + n2}, I)

(The machine is stuck in the second case if R(rs) or R̂(ν) is not an integer.)
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The conditional jump instruction either loads a new instruction sequence or

just consumes one instruction.

R(r) = 0 H(R̂(ν)) = I ′
(E-IfEq)

(H,R, if r jump ν; I) −→ (H,R, I ′)

R(r) = n n 6= 0
(E-IfNeq)

(H,R, if r jump ν; I) −→ (H,R, I)

(The machine is stuck if R(r) is not an integer or, in the first case, if R̂(ν) is

not a label.)
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Consider the following simple code:

l : r1 := 5;

jump r1

Define instruction sequence I = r1 := 5; jump r1 and heap H = {l 7→ I}.

Corresponding to the above code, starting with register file R = {r1 7→ 0} we

have the evaluation step

(H, {r1 7→ 0}, I) −→ (H, {r1 7→ 5}, jump r1)

The machine is now stuck: no further evaluation step is possible because r1

stores an integer instead of a label.

Hence to filter out such bad programs, we need to introduce typing rules.
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Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.

In the previous example, we will start with the register file type Γ = {r1 : Int}.

After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump r1 fails to type check because Γ(r1) is Int

instead of Code.

Hence the code is rejected, as desired.

Is this idea enough?
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Consider the following code:

l : r1 := 5;

r2 := l′;

jump r2

Label l′ points to some other instruction sequence I ′.

I = r1 := 5; jump r1 and heap H = {l : I, l′ 7→ I ′}.

Should the above code be well-typed? After the first two instructions, the

register file type will be {r1 : Int, r2 : Code}, as it should be.

Answer: depends on I ′. . .

193



Consider the code

l′ : jump r1;

Clearly the instruction sequence I ′ = jump r1 expects a label in r1 instead of

an integer.

Hence the code at l is not well-typed.

Solution:

With each instruction sequence, associate a register file type that is expected

at the beginning of that instruction sequence.

Secondly, enrich the notion of types. Instead of having a simple type Code for

labels, we have types of the form Code(Γ) where Γ is a register file type.
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We further choose a type Top which is the super type of all types.

In the previous example, the instruction sequence I ′ will have type

{r1 : Code{r1 : Top, r2 : Top}}

The instruction sequence I ′ expects r1 to contain label to some instruction

sequence (I) which expects both registers to contain ”anything”.

The instruction sequence I has type {r1 : Top, r2 : Top}.

After executing the first two instructions of I, the register file type becomes

{r1 : Int, r2 : Code{. . .}.

Hence the jump instruction doesn’t type check.
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The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

Γ ::= register file types

{r1 : τ1, . . . , rk : τk}

Ψ ::= heap types

{l1 : τ1, . . . , lm : τm}

Typing of operands

The type judgment

Ψ,Γ ` ν : τ

means: under heap type Ψ and register file type Γ, the operand ν has type τ .

Ψ,Γ ` n : Int (T-Int)
l : τ ∈ Ψ

Ψ,Γ ` l : τ
(T-Lab)
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Ψ,Γ ` r : Γ(r) (T-Reg)

Ψ,Γ ` ν : τ τ ′ v τ
(T-Sub)

Ψ,Γ ` ν : τ ′

where

τ v1 τ for every τ

τ v1 Top for every τ

Code(Γ1) v Code(Γ2) iff Γ1(r) v1 Γ2(r) for every register r

Top represents ”any” type, hence can be replaced by any type.
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Typing of instructions

The type judgment

Ψ ` ι : Γ1 → Γ2

means: under heap type Ψ, the instruction ι modifies the register file type from

Γ1 to Γ2.

Ψ,Γ ` ν : τ
(T-Mov)

Ψ ` rd := ν : Γ → Γ ⊕ {rd : τ}

Ψ,Γ ` rs : Int Ψ,Γ ` ν : Int
(T-Add)

Ψ ` rd := rs + ν : Γ → Γ ⊕ {rd : Int}

The mov and add instructions modify the type of the destination register.
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Ψ,Γ ` rs : Int Ψ,Γ ` ν : Code(Γ)
(T-If)

Ψ ` if rs jump ν : Γ → Γ

Both branches of the if instruction must have the same type.

If the if condition fails then the next instruction is executed with register file

of type Γ.

If the if condition succeeds then the jump should be to some instruction

sequence which expects register file type Γ.
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Typing of instruction sequences

The type judgment

Ψ : I : Code(Γ)

means: under heap type Ψ, the instruction sequence I expects the register file

to have type Γ at the beginning.

Ψ,Γ ` ν : Code(Γ)
(T-Jump)

Ψ ` jump ν : Code(Γ)

Ψ ` ι : Γ1 → Γ2 Ψ ` I : Code(Γ2)
(T-Seq)

Ψ ` ι; I : Code(Γ1)
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Typing of register files, heaps, and machine states

Ψ, ` R(r1) : Γ(r1) . . . Ψ, ` R(rk) : Γ(rk)
(T-Regfile)

Ψ ` R : Γ

means that the register file type is irrelevant here

∀l ∈ dom(Ψ) · Ψ ` H(l) : Ψ(l)
(T-Heap)

` H : Ψ

dom(Ψ) is the set of labels in the domain of Ψ

` H : Ψ Ψ ` R : Γ Ψ ` I : Code(Γ)
(T-Mach)

` (H,R, I)

The last judgment means that (H,R, I) is a well-typed machine.
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