Example

l:rl:=1;r2 :=1"; jump r2 . jump rl

\ .

N~

I/

We have the heap H = {l — I[,I" — I'}.

y

.
| : Code{rl : Top,r2 : Top},

Define heap type ¥ = < 0
" : Code{rl : W(l),r2 : Top} }

\

'y ={rl: Top,r2: Top}
Define register file types Ty = {r1: ¥(l),r2 : Top}
Uy ={rl:W(l),r2: (")}

202

claim 1: Wt I : Code(I'y)

203

claim 1: Wt I : Code(I'y)

| : Code{rl: Top,r2: Top} € ¥

(T-Lab)

U, Ty -1 w(l) o)

UErl:=| ZF1—>F2

203-a

claim 1: Wt I : Code(I'y)

| : Code{rl: Top,r2: Top} € ¥

(T-Lab)

Uy E1:w(l) ,
(T-Mov) UkEr2:=1:T9y —1TI45

UErl:=| ZF1—>F2

203-b

claim 1: Wt I : Code(I'y)

| : Code{rl: Top,r2: Top} € ¥

(T-Lab) .
Uy E1:w(l) -
(T-Mov) Uhkr2:=1":Ty —>T;3
UErl:=| ZF1—>F2
\IJ,F3|_I’2Z\IJ|/ Code Fg E\IJV
() (I3) Ew(l') (T-Sub)
\If,rg Fr2: COde(Fg)
(T-Jump)

U F jump r2: Code(I's)

Code(I's) = Code{rl: W¥(l), r2:¥(")}
C w(l') = Code{rl : W(l), r2: Top}
because V(l) C1 ¥(l) and W(l") C; Top.

203-c

. U:r2:=1":T9 —Ts U jump r2 : Code(I's)
Uhrl:=1:T7y -1, Uk r2:=1; jump r2: Code(I'5)
Uk I : Code(I')

(T-Seq)
(T-Seq)

This proves claim 1.

204

. U:r2:=1":T9 —Ts U jump r2 : Code(I's)
Uhrl:=1:T7y -1, Uk r2:=1; jump r2: Code(I'5)
Uk I : Code(I')

(T-Seq)

(T-Seq)

This proves claim 1.

claim 2: W I': Code(I's)

U o krl:W(l) Code(l'y) E W(l)
\IJ,FQ Frl: Code(Fg)
U jump rl : Code(I's)

(T-Sub)
(T-Jump)

204-b

Well typing of the heap
Recall that H = {l— I,I" — I'} and ¥ = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(Ts)
- H W

(T-Heap)

205

Well typing of the heap
Recall that H = {l— I,I" — I'} and ¥ = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(Ts)
- H W

(T-Heap)

Well typing of register file

Suppose we want to start running the machine with the register file

R={rl —0,r2+— 0}

205-a

Well typing of the heap
Recall that H = {l— I,I" — I'} and ¥ = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(Ts)
- H W

(T-Heap)

Well typing of register file

Suppose we want to start running the machine with the register file

R={rl —0,r2+— 0}
Define register file type I'={rl :Int,r2: Int}

205-b

Well typing of the heap
Recall that H = {l— I,I" — I'} and ¥ = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(Ts)
- H W

(T-Heap)

Well typing of register file
Suppose we want to start running the machine with the register file
R={rl—0,r2— 0}
Define register file type I'={rl :Int,r2: Int}

(T-Int) (T-Int)
v,_F0:Int U, _F0:Int

205-c

Suppose the initial instruction sequence we want to execute is 1.

We have shown that W I I : Code(I';) (claim 1).
Similarly we show W F I : Code(I).

206

Suppose the initial instruction sequence we want to execute is 1.

We have shown that W - [: Code(I';) (claim 1).
Similarly we show W F I : Code(I).

Finally, well typing of the machine

~H:W WFR:T WFI:Code(l)
- (H,R,I)

(T-Mach)

206-a

Another example

loop : if rl jump done;

prod: r3:=0; r3:=r2+4r3; _
done: jump rd
jump loop rl:=rl+ —1;
jump loop

207

Another example

loop : if rl jump done;

prod: r3:=0; r3:=1r2+r3; _
_ done: jump rd
jump loop rl:=rl+ —1;
jump loop

To complete the example we will have r4 contain the halt label.

halt : jump halt

207-a

Another example

loop : if rl jump done;

prod: r3:=0; r3:=1r2+r3; _
_ done: jump rd
jump loop rl:=rl+ —1;
jump loop

To complete the example we will have r4 contain the halt label.
halt : jump halt

Name the instructions ¢1,...,tg and the instruction sequences I, I, I3, 14.
Let IV = {rl : Int,r2 : Int, r3 : Int,rd : Top}
Let I' = {rl : Int,r2 : Int,r3 : Int,rd : Code(I")}
Let H = {prod > I, loop +— I5,done — I3, halt — I4}.
Let W = {prod : Code(I"), loop : Code(I"), done : Code(T"), halt : Code(T")}.

207-b

(T-Reg) (T-Int) (T-Lab)
U.I'Fr3:Int U, I'FO0: Int U '+ loop : Code(I)
(T-Mov) (T-Jump)
Uk :I'—=T U jump loop : Code(T")

(T-Seq)

U+ I : Code(T)

208

(T-Reg) (T-Int) (T-Lab)
U.I'Fr3:Int U, I'FO0: Int U '+ loop : Code(I)
(T-Mov) (T-Jump)
Uk :I'—=T U jump loop : Code(T")

(T-Seq)

U+ I : Code(T)

Similarly, W = I : Code(I").

208-a

(T-Reg) (T-Int) (T-Lab)
U.I'Fr3:Int U, I'FO0: Int U '+ loop : Code(I)
(T-Mov) (T-Jump)
Uk :I'—=T U jump loop : Code(T")

(T-Seq)

U+ I : Code(T)

Similarly, W = I : Code(I").

(T-Reg)

W I't rd: Code{rl : Int,r2 : Int,r3 : Int,r4d : Top}
(T-Sub)

U, T r4 : Code(I)
U+ I3 : Code(T)

(T-Jump)

208-b

(T-Reg) (T-Int) (T-Lab)
U.I'Fr3:Int U, I'FO0: Int U '+ loop : Code(I)
(T-Mov) (T-Jump)
Uk :I'—=T U jump loop : Code(T")

(T-Seq)

U+ I : Code(T)

Similarly, W = I : Code(I").

(T-Reg)
W I't rd: Code{rl : Int,r2 : Int,r3 : Int,r4d : Top}
(T-Sub)
U, T r4 : Code(I)
(T-Jump)
U F I3 : Code(T)
(T-Lab)
U, I + halt : Code(T")
(T-Jump)

Ut I : Code(T)

208-c

Hence we have well typing of the machine:

I : Cc‘>de(F) I : Cc‘>de(F) I3 : Cé)de(F) I : Code(T)
- H W

(T-Heap)

209

Hence we have well typing of the machine:

I : Cc‘>de(F) I : Cc‘>de(F) I3 : Cé)de(F) I : Code(T)
- H W

(T-Heap)

Define initial register file: R = {rl — 0,r2 +— 0,r3 — 0, r4 — halt}

(T-Int) (T-Int) (T-Int)
U, _FO0:lInt oo U, _F0:Int U, _ I halt : Code(I")
(T-Regfile)

vkE-R:T

209-a

Hence we have well typing of the machine:

I, : Code(T) I:Code(T) Iy: Code(T") I, : Code(I")
- H W

(T-Heap)

Define initial register file: R = {rl — 0,r2 +— 0,r3 — 0, r4 — halt}

(T-Int) (T-Int) (T-Int)
U, _FO0:lInt oo U, _F0:Int U, _ I halt : Code(I")
(T-Regfile)

vkE-R:T

- H W UVER:T U+ I : Code(T)
l_(HaRall)

(T-Mach)

209-b

Following instruction sequences are rejected by our type system.
I1:rl:=12;r3:=1r2+1;...

13:rl:=5; jump rl

210

Following instruction sequences are rejected by our type system.
I1:rl:=12;r3:=1r2+1;...
13:rl:=5; jump rl

e We haven’t discussed how to check if a mchine is well typed. Alternative:

use proof carrying code.

210-a

Following instruction sequences are rejected by our type system.
I1:rl:=12;r3:=1r2+1;...
13:rl:=5; jump rl

e We haven’t discussed how to check if a mchine is well typed. Alternative:

use proof carrying code.

e It is straightforward to translate TAL-0 programs to code for some real

processor.

If the TAL-0 program is well-typed then the translated code will behave
properly.

210-b

Following instruction sequences are rejected by our type system.
I1:rl:=12;r3:=1r2+1;...
13:rl:=D5; jumprl

e We haven’t discussed how to check if a mchine is well typed. Alternative:

use proof carrying code.

e It is straightforward to translate TAL-0 programs to code for some real

processor.

If the TAL-0 program is well-typed then the translated code will behave
properly.
... for that we of course need to prove type safety for TAL-O ...

210-c

Type safety for TAL-0

"well typed machines do not get stuck”
Progress: If = M then there is some M’ such that M — M.
Preservation: If = M and M — M’ then = M.

211

Type safety for TAL-0

"well typed machines do not get stuck”
Progress: If = M then there is some M’ such that M — M.
Preservation: If = M and M — M’ then = M.

Proof: by easy induction, case analysis. ..

211-a

Type safety for TAL-0

"well typed machines do not get stuck”
Progress: If = M then there is some M’ such that M — M.
Preservation: If = M and M — M’ then = M.

Proof: by easy induction, case analysis. ..

QQ: Why bother doing proofs about programming languages? They are

almost always boring if the definitions are right.

211-b

Type safety for TAL-0

"well typed machines do not get stuck”
Progress: If = M then there is some M’ such that M — M.
Preservation: If = M and M — M’ then = M.

Proof: by easy induction, case analysis. ..

almost always boring if the definitions are right.

A: The definitions are almost always wrong.

— Anonymous

QQ: Why bother doing proofs about programming languages? They are

211-c

An extension: TAL-1

We now also deal with memory safety.

Besides registers, we now have a potentially infinite memory, stack, pointers,

and facilities for allocating space for data.

Already expressive enough for implementing simple programs from high level

languages.

Memory safety: no reads to or writes from illegal memory locations.

212

Examples of new kinds of instructions

o rl = [r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in rl.

213

Examples of new kinds of instructions

o rl := (r2 + 4]
r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in rl.

° [r2 -+ 4] =rl

The reverse store operation.

213-a

Examples of new kinds of instructions

o rl := (r2 + 4]
r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in rl.

° [r2 -+ 4] =rl

The reverse store operation.

e rl := malloc 10

allocate 10 words on the heap, and store corresponding pointer in rl.

213-b

Examples of new kinds of instructions

o rl = [r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in rl.

° [r2 -+ 4] =rl

The reverse store operation.

e rl := malloc 10

allocate 10 words on the heap, and store corresponding pointer in rl.

e salloc 10

allocate 10 words on the stack (and update stack pointer)

213-c

Example code.

rl := malloc 5;

Mem|rl] := 10;
Mem(rl + 1] := 20;
r2 := Mem|rl]

// allocate 5 words on heap
// store data in the first word
// store data in the first word
// load 10 into r2

214

Example code.

rl := malloc 5; // allocate 5 words on heap
Mem|rl] := 10; // store data in the first word
Meml[rl + 1] := 20; // store data in the first word
r2 := Mem|rl] // load 10 into r2

The following code has no well-defined behavior.

rl := malloc 5; // allocate 5 words on heap
r2 := malloc 5; // allocate 5 words on heap

r3:=rl+r2 // add the two pointers

214-2a

Example code.

rl := malloc 5; // allocate 5 words on heap
Mem|rl] := 10; // store data in the first word
Meml[rl + 1] := 20; // store data in the first word
r2 := Mem|rl] // load 10 into r2

The following code has no well-defined behavior.

rl := malloc 5; // allocate 5 words on heap
r2 := malloc 5; // allocate 5 words on heap

r3:=rl+r2 // add the two pointers

Hence for type safety, we should at least have a different type for pointers.

214-b

Further the type system should distinguish between pointers to different types
of data.

rl := malloc 5;
Mem|rl] := 9;
r2 := Mem|rl] // rl stores a pointer, hence this is ok

jump r2 // not ok, since rl was a pointer to an integer

Hence the type-system should deal with types like ptr(Int), ptr(Code(I")),
ptr(ptr(Int)), ...

215

// currently rl : ptr(Code(...))
r3:=5;
Memlrl] :=r3; // now rl : ptr(Int)
rd := Memlrl]; // r4d:Int
jump r4 // of course ill-typed

Hence type of a register should be updated after a store through it.

216

Aliasing problem

Should the following be well typed?

// currently rl : ptr(Code(...)),r2 : ptr(Code(...))
r3:=5;
Memlrl] :==r3; // now rl : ptr(Int)
rd := Mem|r2]; // load through r2. r4 :777
jump r4 // is this well-typed???

217

Aliasing problem

Should the following be well typed?

// currently rl : ptr(Code(...)),r2 : ptr(Code(...))
r3:=5;
Memlrl] :==r3; // now rl : ptr(Int)
rd := Mem|r2]; // load through r2. r4 :777
jump r4 // is this well-typed???

Answer: depends on whether rl and r2 point to the same location (aliasing).

217-b

Aliasing problem

Should the following be well typed?

// currently rl : ptr(Code(...)),r2 : ptr(Code(...))
r3:=5;
Memlrl] :==r3; // now rl : ptr(Int)
rd := Mem|r2]; // load through r2. r4 :777
jump r4 // is this well-typed???

Answer: depends on whether rl and r2 point to the same location (aliasing).

Problem: how should the type system keep track of aliasing?

217-c

Solution: have two kinds of memory locations.

Shared pointers: support aliasing. Different type of data cannot be written.

Unique pointers: no aliasing. Different kind of data can be written. Useful for

allocating and initializing shared data structures, and for stack frames.

The instruction
commit 74

declares a pointer to be shared, its type cannot change now.

218

The TAL-1 syntax: we make the following extensions to the TAL-0 syntax.

T ..

rl|...|rk|sp

rq := Mem|rs + n]
Mem[ry + n] :=r
rq := malloc n
commit ry

salloc n

sfree n

registers

ordinary registers and stack pointer
instructions

mov /add /if-jump

load from memory

store to memory

allocate n heap words

make the pointer shared

allocate n stack words

free n stack words

219

Vo= operands

T registers
n integers
[code or shared data pointers
uptr(h) unique data pointers
h = heap values
1 instruction sequences
(V1y vy Up) tuples

Instruction sequences I are in TAL-0: list of instructions followed by a jump
Values are operands other than registers. Heaps map labels [to heap values /.

Register files and abstract machine states are defined as for TAL-O.

220

The TAL-1 abstract machine: Unique data values are not stored in the heap.

Stack - Heap |

///E%//////””/”/”ﬂgffiﬂd ... code ;..
1 fal

11 -

S~ |

10

15‘l uptr uptr /////////’ /////////'
uptr
%D >
14

"1 10 —
sp rl r2 r3 r4 b

221

TAL-1 evaluation rules

We fix a constant MaxStack: the maximum allowed size of the stack.
All TAI-0 evaluation rules remain the same except the (E-Mov) rule.
This rule now needs to ensure that unique pointers are not copied.

R(v) # uptr(h)
(H,R,rq:=v;1) — (H,R& {rqy — R()},I)

(E-Mov1)

The R function is as for TAL-0. Further we have R(uptr(h)) = uptr(h).

A

If R(v) is uptr(h) then the machine gets stuck.

222

TAL-1 evaluation rules

We fix a constant MaxStack: the maximum allowed size of the stack.
All TAI-0 evaluation rules remain the same except the (E-Mov) rule.
This rule now needs to ensure that unique pointers are not copied.

R(v) # uptr(h)
(H,R,rq:=v;1) — (H,R& {rqy — R()},I)

(E-Mov1)

The R function is as for TAL-0. Further we have R(uptr(h)) = uptr(h).

A

If R(v) is uptr(h) then the machine gets stuck.

The other evaluation rules of TAL-0 are unmodified. We now add new rules for

the new instructions ...

222-a

Allocation generates a unique pointer
(H, R,rq:=malloc n;I) — (H, R & {ry — uptr(my,...,my)},I) (E-Malloc)

e A unique pointer to a tuple of n words is created and stored in the

destination register.

e The initial values in the words are arbitrary integers mq,...,m,,

(uninitialized values)

e Typically we would make the pointer shared once the words have been
initialized.

e malloc instruction takes a constant as argument. Useful for implementing

tuples, records, etc but not yet for variable sized arrays.

223

Allocation

Heap

Vs

sp rl r2 r3 r4 b

r2 := malloc 4

—

Heap
100
17
A
uptr >
\
sp rl r2 r3 r4 b

224

Examples The following code will lead to stuck states.

e copying of unique pointers:

...rl :=malloc 5;r2 :=r1;...

e using unique pointers in place of integers

...r1 :=malloc 5;if rl jump [;..

225

Declaring a pointer to be shared

rq #sp R(rqg) =uptr(h) [¢ dom(H)
(H,R,commit rg;1) = (H®{l— h},R®{rqg—1},1)

(E-Commit)

e The stack is always a unique data value.

e commit moves the unique data in the heap (i.e. it is now considered
shared data)

e A fresh label is associated with the data and is stored in the destination

register.

226

