Heap Heap

commit r2

—

uptr

Ve
-
e
-

sp rl r2 r3 r4 b sp rl r2 r3 r4 5

| is a completely fresh label.

227

Loading and storing

Loading shared data

R(rs)=1 H()=(vo, - sVns---y) (E-Ld-S)
|

(H,R,ry:= Mem|rs+nl;I) — (H,R®{rg— vy}, 1)

228

Loading and storing

Loading shared data

R(rs)=1 H()={(vo, ... Vnyerny)
(H,R,rq:= Memlrs+nl;I) = (H,R® {rq— vy}, 1)

(E-Ld-S)

Loading unique data

R(rs) = uptr{vg, ..., Unyeutsy)

(E-Ld-U)
(H,R,rq:=Memlrs+n|;1) — (H,R® {rqg— vn}, 1)

228-a

Loading shared data

Heap Heap
10 rl := Mem|[r2 4 2] 10
>
5 5
10
sp rl r2 r3 r4 b sp rl r2 r3 r4 rb

229

Loading unique data

Heap
10
5
A
uptr |
1A\

sp rl r2 r3 r4 b

rl := Mem[r2 + 2]| 10

Heap
A
uptr -
\\
10
sp rl r2 r3 r4 5

230

Storing shared data

R(rq) =1 H()={vo,...,Vn,...,) R(rs)=v v # uptr(h)
(H,R,Mem|rqg+n|:=rgl) — (H®{l— (vo,...,v,...,) }, R, T)

(E-St-S)

231

Storing shared data

R(rq) =1 H()={vo,...,Vn,...,) R(rs)=v v # uptr(h)

(E-St-S)
(H,R,Mem|rqg+n|:=rgl) — (H®{l— (vo,...,v,...,) }, R, T)
Storing unique data
R(ry) = uptr{vg,...,Upn,...,) R(rs)=v v # uptr(h
(d) P <O > () # P () (E—St—U)

(H,R,Mem|rqg+n|:=rgI)— (H,R®{rq— uptr{vg,...,v,...,)},I)

231-a

Storing shared data

Heap Heap
7 Mem(r2 + 2] :=rl 10
i R > 4
5 5
10 10
sp rl r2 r3 r4 b sp rl r2 r3 r4 rb

232

Storing unique data

Heap
-
//’—\/. .
5
A
uptr |
10| "

sp rl r2 r3 r4 b

Mem([r2 4 2] := r1|10

—

10

Sp

rl

r2

r3

r4

rb

233

Example Allocating space, initializing data, and making it shared.

| : rl := malloc 3;

r3:=1;
rd .= 7;
Mem(rl] = r3;

Mem([rl + 1] = r4;

commit rl;
r2 :=rl; // now the pointer can be aliased
r4 := rd + 6;

Mem[r2 + 1] :=r4; // this is ok (should be well-typed)
Meml[r2 4+ 1] :=r3; // this is not ok

234

This is also ok.

| : rl := malloc 3;
r3:=1;
r4d :=7;
Mem[rl] =r4; //rl :uptr(Int,...)
Meml|rl] =r3; //rl:uptr(Code(...),...)

commit rl;

Type of data can change before being declared to be shared.

235

Allocation on the stack

R(sp) = uptr(vg,...,vp) p+mn < MaxStack
(H, R,salloc n;I) — (H,R & {sp +— uptr{my,...,mp,,...,Vp)}, 1)

(E-Salloc)

e The stack is a unique data.

e Instead of allocating a new tuple, we extend the existing stack

e Arbitrary integers (uninitialized values) are added at the top of the stack.
e Stack overflow leads to stuck state.

e We have chosen the stack to grow upward: positive indexing as for other

data tuples.

236

Deallocating space from the stack

R(sp) = uptr(vy, ..., U, 10y« s Vp)

A O

(H, R,sfree n;I) — (H,R & {sp — uptr{vg,...,vp),I)

(E-Sfree)

e Stack underflow leads to a stuck state: the stack should have at least n

elements before the sfree instruction.

237

salloc 2
A
uptr
" '10
sp rl r2 r3 r4d 5

7 7
> Mem([sp +1] :==r1 | O
17 10
38 38
A A
uptr uptr
"T1o 110
sp rl r2 r3 rd4 rb sp rl r2 r3 rd rb

238

No call/return instructions in the language.

These are simulated using the jump instruction: e.g. saving/restoring

return addresses are done explicitly.

Allows modifications in calling conventions (passing arguments and return

address on stack or in registers, tail recursion, ...)
For this we focus on a more primitive set of type constructors.

In contrast, the JVM language has notions of procedures and procedure
calls hardwired into the language. Any modification (e.g. adding tail
recursion) requires modifications in the abstract machine and the type

system.

239

Translations from high level languages to TAL-0

TAL-0 is expressive enough to implement simple subsets of high level

languages.

Example C Code

int fib (int x) {
if (x == 0) return 0; else
if (x == 1) return 1; else
return (fib (n—1) 4+ fib (n—2));
}

240

We choose the following calling conventions for our example.

e (Caller pushes arguments on the stack.
e (Caller puts return address in r3.

e (Callee pops arguments from the stack.
e (Callee returns the result in rl.

e Register r2 is freely available for intermediate computations.

241

fib :

r2 := Mem|sp];

if r2 jump ret0;
2:=r2+ —
if r2 jump retl;

salloc 2;

Mem|[sp + 1] := r3;

Mem|sp] :=
r3 := contl;

jump fib

1;

r2;

/] 2:=x

[/ 2:=x—1

// save old return address
// push x — 1 on stack

// new return address

/) 11 = fib(z — 1)

242

retO :

rl:=0; // return value
sfree 1; // pop argument
jump r3 // return

ret] :

rl .= 1;
sfree 1;

jump r3

243

retO: rl:=0; // return value retl: rl:=1;

sfree 1; // pop argument sfree 1;

jump r3 // return

jump r3

contl : salloc 2;
Mem(sp 4 1] := r1;
r2 := Mem|sp + 3|;

2 :=r2+ —2;
Mem(sp] := r2;
r3 := cont2;
jump fib

// save fib(z — 1)

/] r2:=x

/] r2:=x—2

// push x — 2 on stack

// push return address
// rl = fib(x — 2)

243-a

cont2 : 2 := Memlsp]; /] r2 :=fib(x — 1)

rl:=rl +r2; [/ rl:=fib(x — 2) + fib(x — 1)
3 := Mem|sp + 1]; // restore old return address
sfree 3;

jump r3

244

Towards a TAL-1 type system
How to distinguish ”good” programs from ”"bad” programs?
As discussed, we need types

ptr(c) unique pointer type

uptr(c) shared pointer type

where o is an allocated type, i.e. type for allocated data.

The instruction rl := malloc 3 makes the register rl to be of type
uptr(Int, Int, Int).

The instruction commit r2 transforms the type of register r2 from uptr(o) to
ptr(o).

245

Consider the fib example again.

Initially sp should point to a stack having Int at the top.

However the rest of the stack could be arbitrarily large and have elements of

arbitrary type.

246

Consider the fib example again.

Initially sp should point to a stack having Int at the top.

However the rest of the stack could be arbitrarily large and have elements of

arbitrary type.

First idea: use a type similar to Top, to represent tuples of "any” type.

Further this should type should also represent tuples of any length.

Suppose we choose a type Top’ for this.

246-a

Then fib would expect sp to have type (Int, Top’), representing a stack with an

integer at the top and any number of other things below.

Hence we should expect:
fib : Code{sp : uptr{Int, Top’), rl : Top,r2 : Top,r3 : Code(I")}.
What should be I'?

At the end of computation, we have rl : Int, sp : uptr(Top’), and we jump to the

label | contained in r3.

Hence we should expect:

[' = {sp : uptr(Top’),rl : Int,r2 : Top,r3: Top}.

247

Then fib would expect sp to have type (Int, Top’), representing a stack with an

integer at the top and any number of other things below.

Hence we should expect:
fib : Code{sp : uptr{Int, Top’), rl : Top,r2 : Top,r3 : Code(I")}.
What should be I'?

At the end of computation, we have rl : Int, sp : uptr(Top’), and we jump to the

label | contained in r3.
Hence we should expect:
[' = {sp : uptr(Top’),rl : Int,r2 : Top,r3: Top}.

But we are forgetting the relationship between the types of values on the stack

at the beginning and at the end!

247-a

Solution: use type variables to state such equalities.
Hence with fib we will associate the type

Vs - Code{sp : uptr{Int,s),rl : Top,r2 : Top,
r3 : Code{sp : uptr(s),rl : Int,r2 : Top,r3: Top}}

where s is an allocated type variable i.e. representing an arbitrary length of

allocated memory.

This expresses the constraint that the code pointed to by r3 should expect the

same type of stack that is below the argument of fib.

The universal quantifier helps to distinguish occurrences of the variable s

elsewhere.

248

The TAL-1 type system

T = operand types
Int | Code(I)

ptr(o) shared pointer types

uptr(o) unique pointer types

\J R quantification over allocated types

o = allocated types

€ empty tuple type

T one operand

(01, 09) pair

0 allocated type variable

249

operand types are for operands and allocated data types are

As before register file types I' are of the form {sp: 7,rl : 71,

7,T; are operand types.

Similarly heap types ¥ map labels to operand types.

We consider

{(o1,02),03) = (01, (02,03)) = (01,02,03)

(o,€) =(e,0) =0

for tuples.

..., rk : 71} where

250

Typing rules

251

Typing rules

Tuples
Vi<i<n-U.I'kvy 7

U I (v,) s (T, ey Th)

(T-Tuple)

251-a

Typing rules

Tuples
Vi<i<n-U.I'kvy 7
(T-Tuple)
U I (v,) s (T, ey Th)
UV.I'Fh:o
(T-Uptr)

U 'k uptr(h) : uptr(o)

251-b

Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,
where now copying of unique pointers should be prevented. Hence we have the

following new rule.
UV I'kFv:T 7% uptr(o)

UVbkrg=v:I =T @& {ry: 7}

(T-Mov1)

252

Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,
where now copying of unique pointers should be prevented. Hence we have the

following new rule.
UV I'kFv:T 7% uptr(o)

(T-Mov1)
UVbkrg=v:I =T @& {ry: 7}
We add new typing rules for the new instructions.
n>0
— (T-Malloc)
UtErg:=mallocn:T'— I'&{ry:uptr(lnt,... Int)}
n ti?nes

malloc creates a unique pointer type.

202-a

U.I'Frg:uptr(oc) 147 sp
U commitry: ' = T @ {ry: ptr(o)}

(T-Commit)

commit creates a shared pointer type.

rq stores a (label) pointer to the value which has now been moved into the

heap.

253

U.I'Frg:ptr(1g,...,Tn,0)

(T-Ld-S)
Ukrg:=Memlrg+n|:T' =T & {ry: m}

254

U.I'Frg:ptr(1g,...,Tn,0)

(T-Ld-S)
Ukrg:=Memlrg+n|:T' =T & {ry: m}

. Ik rg: uptr<To,.--,TnaU>
Uhkry:= I\/Iem[rs+n] IFHF@{TWT%}

(T-Ld-U)

254-a

U, ' ry:ptr{ro,...,Tn,0) U, T'Fry:7, 7, % uptr(c’)
U Memlrg+nl:=rs: ' =T
Updating shared data should not involve a change in type.

(T-St-S)

255

U, ' ry:ptr{ro,...,Tn,0) U, T'Fry:7, 7, % uptr(c’)
U Memlrg+nl:=rs: ' =T
Updating shared data should not involve a change in type.

(T-St-S)

U, '+ ry:uptr{tg,...,Tn,0) W,I'Fry:7 7 % uptr(o’)
U Memlrg+n]:=rs: I =T & {ry:uptr{rg,...,Th-1,7,0)}

(T-St-U)

255-a

U I'Fsp:uptr(c) n>0

(T-Salloc)
Uhksallocn:T' =T @ {sp: uptr(l\nt, ..., Int, o)}

n times

256

U I'Fsp:uptr(c) n>0

(T-Salloc)
Uksallocn:T' — I'@® {sp: uptr(lnt,...,Int,o)}

n times

WU I sp:uptr{Ti,...,Tn,0)
Uksfreen:T' =T & {sp:uptr(o)}

(T-Sfree)

256-a

U I'Fsp:uptr(c) n>0
Uksallocn:T' — I'@® {sp: uptr(lnt,...,Int,o)}

N~

n times

(T-Salloc)

WU I sp:uptr{Ti,...,Tn,0)
Uksfreen:T' =T & {sp:uptr(o)}

(T-Sfree)

Stack underflows are ruled out by the type system.
What about stack overflows??

256-b

The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

257

The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

R(sp) = uptr{vp,...,vp) p+n > MaxStack
(H, R,salloc n; I) — StackOverflow

(E-Overflow1)

Where StackOverflow is a new special machine state.

This is similar to ”error” terms in our previous discussion on type safety.

257-a

The rules for typing instruction sequences, register files, heaps and machine
states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

258

The rules for typing instruction sequences, register files, heaps and machine
states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

UWEIT:71
UVEIT:Vp-T

(T-Gen)

p is an allocated type variable possibly occurring in 7.

Type of labels can be instantiated by the following rule.

We replace occurrences of p by any desired type 7.
UVI'Fv:Vp-71
U.I'Fv:7lp— 7]

(T-Inst)

258-a

Example

retO: rl:=0; // return value
sfree 1; // pop argument
jump r3 // return

We would like to assign to this instruction sequence, the type

7 =Vs- Code{I'} where

[' = {sp : uptr{Int,s),rl,r2 : Top,r3 : Code{sp : uptr(s),rl : Int,r2,r3: Top}}
where allocated type variable sp represents an arbitrary chunk of memory.

Let 'y =T @ {rl:Int} and I's =T"1 & {sp : uptr(s)}.

For any heap type ¥ we have the following typing derivation.

259

W T'5 - r3: Code{sp: up;cr(s), rl:Int,r2,r3: Top} Code(I'3) C Code{...}
\I/,FQ Fr3: COde(Fg)
U jump r3 : Code(I's)

(T-Sub)

(T-Jump)

260

W T'5 - r3: Code{sp: up;cr(s), rl :Int,r2,r3: Top} Code(I's) E Codef...}
\I/,FQ Fr3: COde(Fg)
U jump r3 : Code(I's)

(T-Sub)

(T-Jump)

U, 'y F sp: uptr{Int,s)

(T-Sfree) :
Uhksfreel: Ty — 1 U jump r3: Code(I'y)
(T-Seq)
U F sfree 1; jump r3 : Code(T'y)
UErl:=0:T -1} U sfree 1; jump r3 : Code(I';)
(T-Seq)

Ut rl := 0;sfree 1; jump r3 : Code(I)
U F rl := 0;sfree 1; jump r3: Vs Code(I")

(T-Gen)

260-a

