
Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

We use the following steps.

(s1 ∧ s2)→s1 by (1)

Alice says ((s1 ∧ s2)→s1) by (4)

Alice says s1 by (3)

292

Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

We use the following steps.

(s1 ∧ s2)→s1 by (1)

Alice says ((s1 ∧ s2)→s1) by (4)

Alice says s1 by (3)

292-a

Axioms about principals

5 (P ∧ Q) says s ≡ (P says s) ∧ (Q says s)

6 (P | Q) says s ≡ P says (Q says s)

7 (P = Q)→(P says s ≡ Q says s)

= is equality on principals.

8 (P1 | (P2 | P3)) = ((P1 | P2) | P3)

Quoting is associative.

293

9 (P1 | (P2 ∧ P3)) = (P1 | P2) ∧ (P1 | P3)

Quoting distributes over conjunction

10 (P⇒Q) ≡ (P = P ∧ Q)

11 (P says (Q⇒P))→(Q⇒P)

A principal is free to choose a representative.

294

Example We want to conclude s from the three statements:

– (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

– Charlie | Alice says s

– (Alice says s)→s

(Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

→(Charlie⇒(Alice ∧ Bob)) by (11)

(Charlie⇒(Alice ∧ Bob)) by (2)

Charlie = (Charlie ∧ Alice ∧ Bob) by (10)

Charlie says (Alice says s) by (6)

(Charlie ∧ Alice ∧ Bob) says (Alice says s) by (7,2)

295

Alice says (Alice says s) by (5,1,2)

Alice says ((Alice says s)→s) by (4)

Alice says s by (3)

s by (2)

296

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

If some code C was signed and K is the corresponding public key then we have

the statement

K says (C⇒K) (S2)

297

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

If some code C was signed and K is the corresponding public key then we have

the statement

K says (C⇒K) (S2)

297-a

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

If some code C was signed and K is the corresponding public key then we have

the statement

K says (C⇒K) (S2)

297-b

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

Hence from S1, S2 and S3 we can conclude F⇒S.

298

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

Hence from S1, S2 and S3 we can conclude F⇒S.

298-a

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

Hence from S1, S2 and S3 we can conclude F⇒S.

298-b

For each target T we treat Ok(T) as an atomic statement.

It means that access to T is permitted.

We consider the axiom

(T says Ok(T))→Ok(T) (S4)

A target is always free to grant permission to itself.

Targets are dummy principals. They never speak, but other (non-dummy)

principals representing them may speak for them.

Target credentials T is the set of such axioms for all targets T .

299

Policy for a virtual machine M is defined by a set

access credentials AM of statements of the form P⇒T where P is a principal

and T is a target.

This rule means that the local policy of virtual machine M allows P to access

T .

300

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.

301

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.

301-a

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.

301-b

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.

301-c

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

Checking privileges

When F calls checkPrivilege(T) then we check that Ok(T) can be concluded

from the set

Φ ∪ T ∪ AM ∪ {F says s | s ∈ BF}.

302

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

Checking privileges

When F calls checkPrivilege(T) then we check that Ok(T) can be concluded

from the set

Φ ∪ T ∪ AM ∪ {F says s | s ∈ BF}.

302-a

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

Checking privileges

When F calls checkPrivilege(T) then we check that Ok(T) can be concluded

from the set

Φ ∪ T ∪ AM ∪ {F says s | s ∈ BF}.

302-b

Example Assume at the beginning that BF1
= {}.

Now F1 calls enablePrivilege(T1). We have BF1
= {Ok(T1)}.

F1 calls checkPrivilege(T1).

Hence we take the statement F1 says Ok(T1).

Let S1 be the signer of the code which produced the frame F1.

Then we conclude F1⇒S1 from the frame credentials Φ.

If the access credentials set AM has a statement S1⇒T1

then using the statement (T1 says Ok(T1))→Ok(T1) from T

we conclude Ok(T1).

303

Now F1 makes a function call and the new frame F2 calls enablePrivilege(T2).

We have BF2
= {F1 says Ok(T1),Ok(T2)}

F2 makes function call and the new frame F3 calls disablePrivilege(T1).

We have BF3
= {F2 says Ok(T2)}.

F3 makes function call and the new frame F4 calls enablePrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2),Ok(T2)}.

F4 calls revertPrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2)}.

304

Now F4 calls checkPrivilegeT2.

We take the statement (F4 | F3 | F2) says Ok(T2) i.e.

F4 says (F3 says (F2 says Ok(T2))).

Suppose from the frame credentials Φ imply that

F4⇒S4 F3⇒S3 F2⇒S2

Suppose that AM further has statements

S4⇒T2 S3⇒T2 S2⇒T2

Then we conclude:

T2 says (F3 says (F2 says Ok(T2)))

T2 says (T2 says (F2 says Ok(T2)))

305

T2 says (T2 says (T2 says Ok(T2)))

Further (T2 says Ok(T2))→Ok(T2) is in T .

Hence T2 says (T2 says ((T2 says Ok(T2))→Ok(T2))).

Hence T2 says (T2 says Ok(T2)).

Similarly T2 says Ok(T2).

Hence Ok(T2).

306

Security protocols

For secure communication over an insecure network.

• Adversary can spy on messages,

• delete messages,

• modify messages,

• impersonate as Alice to Bob,

• deny having sent or received a message

• . . .

307

Encrypting and decrypting messages

. . . the naive way:

Instead of Alice −→ Bob:

This is Alice. My credit card number is 1234567890123456

We have Alice −→ Bob:

6543210987654321 si rebmun drac tiderc yM .ecilA si sihT

Alice and Bob agree on the method of encryption and decryption.

ciphertext
encryption decryption

plaintext original plaintext

308

Cryptography with keys

Today we instead have the following picture:

ciphertext
encryption decryption

K1
K2

plaintext original plaintext

The encryption and decryption algorithms are assumed to be publicly known.

The security lies in the (secret) keys.

8109675
add mod 10 add mod 10

47652314765231

4 6

309

Cryptography of the pre-computer age Substitution ciphers: each character

is mapped to the another character. The famous Caesar cipher: A → D, B →

E, . . . , Z → C.

transposition cipher: shuffling around of characters.

Plaintext: this is alice my credit card number is 1234567890123456

thisisalic

emycreditc

ardnumberi

s123456789

0123456

Ciphertext: teas0 hmr11 iyd22 scn33 iru44 sem55 adb66 lie7i tr8cc

i9

310

Private key cryptography

encryption decryption
{m}k

k k

m m

• The same key k is used for encryption and decryption

• Given message m and key k, we can compute the encrypted message {m}k

• Given the encrypted message {m}k and the key k, we can compute the

original message m

311

Private key cryptography

Suppose Kab is a private key shared between A and B.

A can send a message m to B using private key cryptography:

A −→ B : {m}Kab

Only B can get back the message m.

A and B need to agree beforehand on a key Kab which should not be disclosed

to any one else

312

Public key cryptography

encryption decryption
{m}k

k

m m

k
−1

• A chooses pair (Ka,K
−1
a) of keys such that

– messages encrypted with Ka can be decrypted with K−1
a

– K−1
a cannot be calculated from Ka

• A makes Ka public: this is the public key of A

• A keeps K−1
a secret: this is the private key of A

313

Public key cryptography

Then any B can send a message to A which only A can read:

B −→ A : {m}Ka

Sometimes we have the additional property: messages encrypted with K−1
a can

be decrypted with Ka

Then A can send a message m to B

A −→ B : {m}K−1
a

and B is sure that the message m was encrypted by A. Hence we have

authentication

314

One way hash functions

Properties of a one way hash function H:

– Given M , it is easy to compute H(M) (called message digest).

– Given H(M) is is difficult to find M ′ such that H(M) = H(M ′).

A sends to B the message M together with the encrypted hash value

{H(M)}Kab
.

Efficient means of demonstrating authenticity, since H(M) is of a fixed size.

315

Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms are

perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)

316

Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms are

perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)

316-a

Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

317

Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

317-a

Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

317-b

Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

317-c

A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

318

A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

318-a

A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

318-b

A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

318-c

