Cryptography and cryptographic protocols

e Cryptography deals with algorithms for encryption, decryption, random
number generation, etc. Cryptographic protocols use cryptography for

exchanging messages.

e Attacks against cryptographic primitives involves breaking the algorithm
for encryption, etc. Attacks against cryptographic protocols may be of

completely logical nature.

e Cryptographic protocols may be insecure even if the underlying

cryptographic primitives are completely secure.

e Hence we often separate the study of cryptographic protocols from that of

cryptographic primitives.

319

Difficulty in ensuring correctness of cryptographic protocols
e Infinitely many sessions
e Infinitely many participants
e Infinitely many nonces
e Sessions are interleaved

e Adversary can replace messages by any arbitrary message: infinitely

branching system

320

Back to our example

1. A— B: {AaNa}Kb
2. B— A:{N,, N}k,
3. A— B:{Ny}xk,

321

Back to our example

1. A— B: {AaNa}Kb
2. B— A:{N,, Np}k,
3. A— B: {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.
Published in 1978. Attack found after 17 years in 1995 by Lowe.

321-a

Man in the middle attack

A7Na c AvNa K

A { }K e (A) { } b .
Ny, Nptk, Ny, NptK,

A { b} K C(A) - { b} K .
N N

A {No] k. A {No}xc, Cn

322

Man in the middle attack

A, Ny ik, A, N,

A { } i Lo A) { t K, :
Ny, Nptk, Ny, NptK,

A { bIK (A) <{ bIK .
N, N,

A {No] k. A {No}xc, Cn

Even very simple protocols may have subtle flaws

322-a

Consequences

Suppose B is the server of a bank.

C', who can now pretend to be A:

C' — B : {N,4, N}, transfer £5000 from account of A to account of C'} g,

323

A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A— B:{A, Na}x,
2. B— A:{B,N,, Ny}g,
3. A— B: {Nb}Kb

324

A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A— B:{A, Na}x,
2. B— A:{B,N,, Ny}g,
3. A— B: {Nb}Kb

Is it secure?

324-a

A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A—>B:{A,Na}Kb
2. B— A: {NaaNbaB}Ka
3. A— B:{Ny}x,

325

A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A—>B:{A,Na}Kb
2. B—>AI{NG,N[,,B}KCL
3. A— B:{Ny}x,

Does this affect security?

325-a

Type flaw

An attack on the variant of the Needham-Schroeder-Lowe protocol [Millen]:

{A7 C}Kb

Q

326

The Spi calculus
Abadi, Gordon, 1997

e Extends pi calculus which provides a language for describing processes.

e We treat protocols as processes, where messages sent and received by

processes may involve encryption.

e Security is defined as equivalence between processes in the eyes of an

arbitrary environment.
e Environment is also a spi calculus process.

e We study information flow to check whether secrets are leaked.

327

e A process may involve sequences of actions for sending and receiving

messages on channels.

e A Processes may contain smaller processes running in parallel.

328

e A process may involve sequences of actions for sending and receiving

messages on channels.

e A Processes may contain smaller processes running in parallel.

Use halt to denote a finished process: it does nothing.

We write send.(M); P to denote a process that sends the message M on

channel c after which it executes the process P.

recv.(x); () denotes a process that is listening on the channel c.

On receiving some message M on this channel then it executes process QM /x].

328-a

The process

Py = recv.(z);sendg(z); halt

on receiving message M on channel ¢, sends M on channel d and then halts.

The process
Py = send.(M); halt

sends M on channel ¢ and halts.

329

The process

Py = recv.(z);sendg(z); halt

on receiving message M on channel ¢, sends M on channel d and then halts.

The process
Py = send.(M); halt

sends M on channel ¢ and halts.

Putting them in parallel gives the process
Ps =P | P

The message sent by P; is received by FP»>. Hence P53 as a whole can make a

”silent” transition to the process sendy (M); halt.

329-a

Further the process
Ps & P | Py

where
Py = recvg(x); halt

can halt after making only silent transitions.

Intuitively Ps represents the protocol
P, — Py : M (on channel c)

P, — Py: M (on channel d)

330

We can restrict access to channels.

The process new c; P creates a fresh channel ¢ and can be used inside process

P. No outside process can access c.

(c is like a bound variable whose scope is inside P)

We consider processes to be the same after renaming of bound names.

Consider the process
(new c;send.(M); halt) | (recv.(x); halt)

No communication happens between the two smaller processes.

The above process is the same as the following one.
(new d;sendg(M); halt) | (recv.(x); halt)

331

Hence new allows us to create channels for secure communication.

Consider the process
new c; (send.(M); halt | recv.(z); P | recv.(x); Q)

Communication can take place between first and second subprocess to create
the process new c; (P[M/x] | recv.(z); Q)

Or communication can take place between first and third subprocess to create
the process new c; (recve(x); P | QM /x])

332

Hence new allows us to create channels for secure communication.

Consider the process
new c; (send.(M); halt | recv.(z); P | recv.(x); Q)

Communication can take place between first and second subprocess to create
the process new c; (P[M/x] | recv.(z); Q)

Or communication can take place between first and third subprocess to create
the process new c; (recve(x); P | QM /x])

However the process
(new c¢; (send.(M); halt | recv.(x); P)) | recve(x); Q)

can only lead to the process (new ¢; P[M /x]) | recve(x);

332-a

Channels can also be sent as messages. Consider the following protocol where

cap is a freshly created channel whereas cyg and csp are long term channels.
A— S:caponcyg
S — B :cap on cgp
A— B:Moncap
can be represented as follows where F'(y) is a process involving variable .
A £ new cap;sende,.{(cap);send.,, (M).halt
S = recve,(7);sendeg,, () halt
B £ recveg, ()i recvy (y); Fy)
P = new cag;new csp; (A | S| B)

P makes silent transitions to new cag;new cgp; F'(M).

333

Processes can perform computations like
e encryption, decryption (we will deal with only symmetric key encryption)
e palring, unpairing
e increments, decrements

e checking equality of messages

334

Processes can perform computations like
e encryption, decryption (we will deal with only symmetric key encryption)
e pairing, unpairing
e increments, decrements

e checking equality of messages

The process

recv.(x1, T2, x3); case x1 of

{y1} K : check (y1 == x3);send.(y1,succ (z3)); halt

receives an input of the form {M }x, M, N on channel ¢ and sends out

Y1, succ (x3) on channel c.

334-a

The syntax

M ::

(M, N)

succ (M)

(M, ..

.9 Mk}N

term

name

pair

Z€ro
successor
encryption

variable

335

sendps (N1, ..., Np); P
recvar(xy, ..., xk); P

halt

PlQ

repeat P

new n; P

check (M == N); P

let (z,y) = M; P

case M of 0: P, succ (z) : Q)
case M of {x1,...,xk}n: P

process
output

input

halt

parallel composition
replication
restriction
comparison
unpairing

integer case analysis

decryption

336

Intuitively, repeat P represents infinitely many copies of P running in parallel.
In other words we can consider repeat P to represent P | P | P | ...

Consider
P 2 recv.(x); halt

Py £ send.(Mj); halt
Py £ send.(M>); halt

The process
P ‘ P ‘ repeat P

can make silent transitions (internal communication) to create the process

repeat P

337

A one message protocol using cryptography, where K 4p is a symmetric key

shared between A and B for private communication.
A— B:{M}g,, oncap
This can be represented as
A Zsend.,,({M}k,,);halt
B = recv.,,(x);case x of {y}x,, : F(y)
P 2 new Kp:(A| B)
The key K ap is restricted, only A and B can use it.

The channel c4p is public. Other principals may send messages on it or listen

on 1t.

P can make silent transitions to new K 4p; F'(M).

338

Formal semantics
We now need to define how processes execute.

For example we would like
send.(M); P | recv.(z); Q — P | Q[M /x]

where 7 denotes a silent action (internal communication).

Let fn(M) and fn(P) be the set of free names in term M and process P

respectively.

Let fu(M) and fu(P) be the set of free variables in term M and process P

respectively.

Closed processes are processes without any free variables.

339

Let P 2 new c;new K;recvy(z); case = of {y}x : sendy({y}x, 2, c); halt.
We have
fn(senda{{y}k, 2, c);halt) = {c,d, K'}
fu(senda({y}t k., 2, ¢); halt) = {y, 2}
fn(case z of {y} g : sendg{{y} Kk, z,¢); halt) = {¢,d, K, K"}
fu(case x of {y}k+ :sendi({y} K, 2, ¢); halt) = {z, z}
fn(P)={d, K"}
(
(
(

~

v(P) ={z}
m{ytx) ={K}
fo({ytr) = {y}

340

First we define reduction relation > on closed processes:

repeat P > P | repeat P (R-Repeat)
check (M == M); P > P (R-Check)

let (x,y) = (M,N); P > P[M/x,N/y] (R-Let)
case 0 of 0: P, succ (z):Q > P (R-Zero)
case succ (M) of 0: P, succ (z) : Q > QM /x] (R
case {M}n of {z}n: P > P[M/x] (

-Succ)

R-decrypt)

341

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.
check (0 == succ (0); P (comparison fails).

let (z,y) = 0; P (unpairing fails)

case (M, N) of 0: P, succ (x): @ (not an integer)

case (M, N) of {x,y}x : P (not an encrypted message)

case {M, N}k of {x,y}x : P where K # K’

342

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.
check (0 == succ (0); P (comparison fails).

let (z,y) = 0; P (unpairing fails)

case (M, N) of 0: P, succ (x): @ (not an integer)

case (M, N) of {x,y}x : P (not an encrypted message)

case {M, N}k of {x,y}x : P where K # K’

This is also based on the perfect cryptography assumption: distinct terms

represent distinct messages.

342-a

A barb (is either
e a name n (representing input on channel n), or

e a co-name 7 (representing output on channel n)

An action is either
e a barb (representing input or output to the outside world), or

e 7 (representing a silent action i.e. internal communication)

We write P —— () to mean that P makes action a after which Q is the

remaining process that is left to be executed.

343

Commitment relation Consider again send.(M); P | recv.(x); Q

344

Commitment relation Consider again send.(M); P | recv.(x); Q

The first subprocess makes an output action on channel c.

We will represent it as send.(M); P —— (M)P.

(M) P is called a concretion: it represents a commitment to output message M

after which P will be executed.

344-a

Commitment relation Consider again send.(M); P | recv.(x); Q)
The first subprocess makes an output action on channel c.

We will represent it as send.(M); P —— (M)P.

(M) P is called a concretion: it represents a commitment to output message M

after which P will be executed.
The second subprocess makes an input action on channel c.
We will represent it as recv.(z); Q — ()Q.

()@ is called an abstraction:it represents a commitment to input some x after
which P will be executed.

344-b

Commitment relation Consider again send.(M); P | recv.(x); Q)
The first subprocess makes an output action on channel c.

We will represent it as send.(M); P —— (M)P.

(M) P is called a concretion: it represents a commitment to output message M

after which P will be executed.
The second subprocess makes an input action on channel c.
We will represent it as recv.(z); Q — ()Q.

()@ is called an abstraction:it represents a commitment to input some x after
which P will be executed.

Abstractions and concretions can be combined:

(M)P @ (2)Q = P | QM /z]

344-c

