
Cryptography and cryptographic protocols

• Cryptography deals with algorithms for encryption, decryption, random

number generation, etc. Cryptographic protocols use cryptography for

exchanging messages.

• Attacks against cryptographic primitives involves breaking the algorithm

for encryption, etc. Attacks against cryptographic protocols may be of

completely logical nature.

• Cryptographic protocols may be insecure even if the underlying

cryptographic primitives are completely secure.

• Hence we often separate the study of cryptographic protocols from that of

cryptographic primitives.

319

Difficulty in ensuring correctness of cryptographic protocols

• Infinitely many sessions

• Infinitely many participants

• Infinitely many nonces

• Sessions are interleaved

• Adversary can replace messages by any arbitrary message: infinitely

branching system

320

Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.

Published in 1978. Attack found after 17 years in 1995 by Lowe.

321

Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.

Published in 1978. Attack found after 17 years in 1995 by Lowe.

321-a

Man in the middle attack

A -

{A,Na}Kc

C (A) -

{A,Na}Kb
B

A �

{Na, Nb}Ka

C (A)�

{Na, Nb}Ka

B

A -

{Nb}Kc

C (A) -

{Nb}Kb
B

Even very simple protocols may have subtle flaws

322

Man in the middle attack

A -

{A,Na}Kc

C (A) -

{A,Na}Kb
B

A �

{Na, Nb}Ka

C (A)�

{Na, Nb}Ka

B

A -

{Nb}Kc

C (A) -

{Nb}Kb
B

Even very simple protocols may have subtle flaws

322-a

Consequences

Suppose B is the server of a bank.

C, who can now pretend to be A:

C −→ B : {Na, Nb, transfer £5000 from account of A to account of C}Kb

323

A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb

Is it secure?

324

A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb

Is it secure?

324-a

A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb

Does this affect security?

325

A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb

Does this affect security?

325-a

Type flaw

An attack on the variant of the Needham-Schroeder-Lowe protocol [Millen]:

C -

{A,C}Kb
B

B -

{C,Nb, B
︸ ︷︷ ︸

Nc

}Ka

A

C �

{Nb, B,Na, A}Kc

A

326

The Spi calculus

Abadi, Gordon, 1997

• Extends pi calculus which provides a language for describing processes.

• We treat protocols as processes, where messages sent and received by

processes may involve encryption.

• Security is defined as equivalence between processes in the eyes of an

arbitrary environment.

• Environment is also a spi calculus process.

• We study information flow to check whether secrets are leaked.

327

• A process may involve sequences of actions for sending and receiving

messages on channels.

• A Processes may contain smaller processes running in parallel.

Use halt to denote a finished process: it does nothing.

We write sendc〈M〉;P to denote a process that sends the message M on

channel c after which it executes the process P .

recvc(x);Q denotes a process that is listening on the channel c.

On receiving some message M on this channel then it executes process Q[M/x].

328

• A process may involve sequences of actions for sending and receiving

messages on channels.

• A Processes may contain smaller processes running in parallel.

Use halt to denote a finished process: it does nothing.

We write sendc〈M〉;P to denote a process that sends the message M on

channel c after which it executes the process P .

recvc(x);Q denotes a process that is listening on the channel c.

On receiving some message M on this channel then it executes process Q[M/x].

328-a

The process

P1 , recvc(x); sendd〈x〉; halt

on receiving message M on channel c, sends M on channel d and then halts.

The process

P2 , sendc〈M〉; halt

sends M on channel c and halts.

Putting them in parallel gives the process

P3 , P1 | P2

The message sent by P1 is received by P2. Hence P3 as a whole can make a

”silent” transition to the process sendd〈M〉; halt.

329

The process

P1 , recvc(x); sendd〈x〉; halt

on receiving message M on channel c, sends M on channel d and then halts.

The process

P2 , sendc〈M〉; halt

sends M on channel c and halts.

Putting them in parallel gives the process

P3 , P1 | P2

The message sent by P1 is received by P2. Hence P3 as a whole can make a

”silent” transition to the process sendd〈M〉; halt.

329-a

Further the process

P5 , P3 | P4

where

P4 , recvd(x); halt

can halt after making only silent transitions.

Intuitively P5 represents the protocol

P2 −→ P1 : M (on channel c)

P1 −→ P4 : M (on channel d)

330

We can restrict access to channels.

The process new c;P creates a fresh channel c and can be used inside process

P . No outside process can access c.

(c is like a bound variable whose scope is inside P)

We consider processes to be the same after renaming of bound names.

Consider the process

(new c; sendc〈M〉; halt) | (recvc(x); halt)

No communication happens between the two smaller processes.

The above process is the same as the following one.

(new d; sendd〈M〉; halt) | (recvc(x); halt)

331

Hence new allows us to create channels for secure communication.

Consider the process

new c; (sendc〈M〉; halt | recvc(x);P | recvc(x);Q)

Communication can take place between first and second subprocess to create

the process new c; (P [M/x] | recvc(x);Q)

Or communication can take place between first and third subprocess to create

the process new c; (recvc(x);P | Q[M/x])

However the process

(new c; (sendc〈M〉; halt | recvc(x);P)) | recvc(x);Q

can only lead to the process (new c;P [M/x]) | recvc(x);Q

332

Hence new allows us to create channels for secure communication.

Consider the process

new c; (sendc〈M〉; halt | recvc(x);P | recvc(x);Q)

Communication can take place between first and second subprocess to create

the process new c; (P [M/x] | recvc(x);Q)

Or communication can take place between first and third subprocess to create

the process new c; (recvc(x);P | Q[M/x])

However the process

(new c; (sendc〈M〉; halt | recvc(x);P)) | recvc(x);Q

can only lead to the process (new c;P [M/x]) | recvc(x);Q

332-a

Channels can also be sent as messages. Consider the following protocol where

cAB is a freshly created channel whereas cAS and cSB are long term channels.

A −→ S : cAB on cAS

S −→ B : cAB on cSB

A −→ B : M on cAB

can be represented as follows where F (y) is a process involving variable y.

A , new cAB ; sendcAS
〈cAB〉; sendcAB

〈M〉.halt

S , recvcAS
(x); sendcSB

〈x〉; halt

B , recvcSB
(x); recvx(y);F (y)

P , new cAS ; new cSB ; (A | S | B)

P makes silent transitions to new cAS ; new cSB ;F (M).

333

Processes can perform computations like

• encryption, decryption (we will deal with only symmetric key encryption)

• pairing, unpairing

• increments, decrements

• checking equality of messages

The process

recvc(x1, x2, x3); case x1 of

{y1}K : check (y1 == x2); sendc〈y1, succ (x3)〉; halt

receives an input of the form {M}K ,M,N on channel c and sends out

y1, succ (x3) on channel c.

334

Processes can perform computations like

• encryption, decryption (we will deal with only symmetric key encryption)

• pairing, unpairing

• increments, decrements

• checking equality of messages

The process

recvc(x1, x2, x3); case x1 of

{y1}K : check (y1 == x2); sendc〈y1, succ (x3)〉; halt

receives an input of the form {M}K ,M,N on channel c and sends out

y1, succ (x3) on channel c.

334-a

The syntax

M ::= term

n name

(M,N) pair

0 zero

succ (M) successor

{M1, . . . ,Mk}N encryption

x variable

335

P ::= process

sendM 〈N1, . . . , Nk〉;P output

recvM (x1, . . . , xk);P input

halt halt

P | Q parallel composition

repeat P replication

new n;P restriction

check (M == N);P comparison

let (x, y) = M ;P unpairing

case M of 0 : P , succ (x) : Q integer case analysis

case M of {x1, . . . , xk}N : P decryption

336

Intuitively, repeat P represents infinitely many copies of P running in parallel.

In other words we can consider repeat P to represent P | P | P | . . .

Consider

P , recvc(x); halt

P1 , sendc(M1); halt

P2 , sendc(M2); halt

The process

P1 | P2 | repeat P

can make silent transitions (internal communication) to create the process

repeat P

337

A one message protocol using cryptography, where KAB is a symmetric key

shared between A and B for private communication.

A −→ B : {M}KAB
on cAB

This can be represented as

A , sendcAB
〈{M}KAB

〉; halt

B , recvcAB
(x); case x of {y}KAB

: F (y)

P , new KAB; (A | B)

The key KAB is restricted, only A and B can use it.

The channel cAB is public. Other principals may send messages on it or listen

on it.

P can make silent transitions to new KAB ;F (M).

338

Formal semantics

We now need to define how processes execute.

For example we would like

sendc〈M〉;P | recvc(x);Q
τ

−→ P | Q[M/x]

where τ denotes a silent action (internal communication).

Let fn(M) and fn(P) be the set of free names in term M and process P

respectively.

Let fv(M) and fv(P) be the set of free variables in term M and process P

respectively.

Closed processes are processes without any free variables.

339

Let P , new c; new K; recvd(x); case x of {y}K ′ : sendd〈{y}K , z, c〉; halt.

We have

fn(sendd〈{y}K , z, c〉; halt) = {c, d,K}

fv(sendd〈{y}K , z, c〉; halt) = {y, z}

fn(case x of {y}K ′ : sendd〈{y}K , z, c〉; halt) = {c, d,K,K ′}

fv(case x of {y}K ′ : sendd〈{y}K , z, c〉; halt) = {x, z}

fn(P) = {d,K ′}

fv(P) = {z}

fn({y}K) = {K}

fv({y}K) = {y}

340

First we define reduction relation > on closed processes:

repeat P > P | repeat P (R-Repeat)

check (M == M);P > P (R-Check)

let (x, y) = (M,N);P > P [M/x,N/y] (R-Let)

case 0 of 0 : P , succ (x) : Q > P (R-Zero)

case succ (M) of 0 : P , succ (x) : Q > Q[M/x] (R-Succ)

case {M}N of {x}N : P > P [M/x] (R-decrypt)

341

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0);P (comparison fails).

let (x, y) = 0;P (unpairing fails)

case (M,N) of 0 : P , succ (x) : Q (not an integer)

case (M,N) of {x, y}K : P (not an encrypted message)

case {M,N}K′ of {x, y}K : P where K 6= K ′

This is also based on the perfect cryptography assumption: distinct terms

represent distinct messages.

342

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0);P (comparison fails).

let (x, y) = 0;P (unpairing fails)

case (M,N) of 0 : P , succ (x) : Q (not an integer)

case (M,N) of {x, y}K : P (not an encrypted message)

case {M,N}K′ of {x, y}K : P where K 6= K ′

This is also based on the perfect cryptography assumption: distinct terms

represent distinct messages.

342-a

A barb β is either

• a name n (representing input on channel n), or

• a co-name n (representing output on channel n)

An action is either

• a barb (representing input or output to the outside world), or

• τ (representing a silent action i.e. internal communication)

We write P
α

−→ Q to mean that P makes action α after which Q is the

remaining process that is left to be executed.

343

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which P will be executed.

Abstractions and concretions can be combined:

〈M〉P @ (x)Q = P | Q[M/x]

344

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which P will be executed.

Abstractions and concretions can be combined:

〈M〉P @ (x)Q = P | Q[M/x]

344-a

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which P will be executed.

Abstractions and concretions can be combined:

〈M〉P @ (x)Q = P | Q[M/x]

344-b

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which P will be executed.

Abstractions and concretions can be combined:

〈M〉P @ (x)Q = P | Q[M/x]

344-c

