Cryptography and cryptographic protocols

- Cryptography deals with algorithms for encryption, decryption, random number generation, etc. Cryptographic protocols use cryptography for exchanging messages.
- Attacks against cryptographic primitives involves breaking the algorithm for encryption, etc. Attacks against cryptographic protocols may be of completely logical nature.
- Cryptographic protocols may be insecure even if the underlying cryptographic primitives are completely secure.
- Hence we often separate the study of cryptographic protocols from that of cryptographic primitives.

Difficulty in ensuring correctness of cryptographic protocols

- Infinitely many sessions
- Infinitely many participants
- Infinitely many nonces
- Sessions are interleaved
- Adversary can replace messages by any arbitrary message: infinitely branching system

Back to our example

- 1. $A \longrightarrow B : \{A, N_a\}_{K_b}$
- 2. $B \longrightarrow A : \{N_a, N_b\}_{K_a}$
- 3. $A \longrightarrow B : \{N_b\}_{K_b}$

Back to our example

1. $A \longrightarrow B : \{A, N_a\}_{K_b}$ 2. $B \longrightarrow A : \{N_a, N_b\}_{K_a}$ 3. $A \longrightarrow B : \{N_b\}_{K_b}$

This is the well-known Needham-Schroeder public-key protocol. Published in 1978. Attack found after 17 years in 1995 by Lowe.

Man in the middle attack

$$A \xrightarrow{\{A, N_a\}_{K_c}} C(A) \xrightarrow{\{A, N_a\}_{K_b}} B$$

A
$$\underbrace{\{N_a, N_b\}_{K_a}}_{C (A)} \underbrace{\{N_a, N_b\}_{K_a}}_{B}$$
 B

$$A \xrightarrow{\{N_b\}_{K_c}} C (A) \xrightarrow{\{N_b\}_{K_b}} B$$

322

Man in the middle attack

$$A \xrightarrow{\{A, N_a\}_{K_c}} C(A) \xrightarrow{\{A, N_a\}_{K_b}} B$$

$$A \xrightarrow{\{N_a, N_b\}_{K_a}} C(A) \xleftarrow{\{N_a, N_b\}_{K_a}} B$$

$$A \xrightarrow{\{N_b\}_{K_c}} C(A) \xrightarrow{\{N_b\}_{K_b}} B$$

Even very simple protocols may have subtle flaws

Consequences

Suppose B is the server of a bank. C, who can now pretend to be A:

 $C \longrightarrow B : \{N_a, N_b, \text{ transfer } \pounds 5000 \text{ from account of } A \text{ to account of } C\}_{K_b}$

A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

- 1. $A \longrightarrow B : \{A, Na\}_{K_b}$
- 2. $B \longrightarrow A : \{B, N_a, N_b\}_{K_a}$
- 3. $A \longrightarrow B : \{N_b\}_{K_b}$

A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

- 1. $A \longrightarrow B : \{A, Na\}_{K_b}$
- 2. $B \longrightarrow A : \{B, N_a, N_b\}_{K_a}$
- 3. $A \longrightarrow B : \{N_b\}_{K_b}$

Is it secure?

A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

- 1. $A \longrightarrow B : \{A, Na\}_{K_b}$
- 2. $B \longrightarrow A : \{N_a, N_b, B\}_{K_a}$
- 3. $A \longrightarrow B : \{N_b\}_{K_b}$

A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

- 1. $A \longrightarrow B : \{A, Na\}_{K_b}$
- 2. $B \longrightarrow A : \{N_a, N_b, B\}_{K_a}$
- 3. $A \longrightarrow B : \{N_b\}_{K_b}$

Does this affect security?

Type flaw

An attack on the variant of the Needham-Schroeder-Lowe protocol [Millen]:

C
$$(A, C)_{K_b}$$
 B
B $(C, N_b, B)_{K_a}$ A
B $(N_b, B, N_a, A)_{K_c}$ A

The Spi calculus

Abadi, Gordon, 1997

- Extends **pi** calculus which provides a language for describing processes.
- We treat protocols as processes, where messages sent and received by processes may involve encryption.
- Security is defined as equivalence between processes in the eyes of an arbitrary environment.
- Environment is also a spi calculus process.
- We study information flow to check whether secrets are leaked.

- A process may involve sequences of actions for sending and receiving messages on channels.
- A Processes may contain smaller processes running in parallel.

- A process may involve sequences of actions for sending and receiving messages on channels.
- A Processes may contain smaller processes running in parallel.

Use halt to denote a finished process: it does nothing.

We write $\operatorname{send}_c \langle M \rangle$; *P* to denote a process that sends the message *M* on channel *c* after which it executes the process *P*.

 $\operatorname{recv}_{c}(x); Q$ denotes a process that is listening on the channel c. On receiving some message M on this channel then it executes process Q[M/x]. The process

$P_1 \triangleq \operatorname{recv}_{c}(x); \operatorname{send}_{d}\langle x \rangle; \operatorname{halt}$

on receiving message M on channel c, sends M on channel d and then halts.

The process

$$P_2 \triangleq \operatorname{send}_c \langle M \rangle; \operatorname{halt}$$

sends M on channel c and halts.

The process

$P_1 \triangleq \operatorname{recv}_{c}(x); \operatorname{send}_{d}\langle x \rangle; \operatorname{halt}$

on receiving message M on channel c, sends M on channel d and then halts.

The process

$$P_2 \triangleq \operatorname{send}_c \langle M \rangle; \operatorname{halt}$$

sends M on channel c and halts.

Putting them in parallel gives the process

 $P_3 \triangleq P_1 \mid P_2$

The message sent by P_1 is received by P_2 . Hence P_3 as a whole can make a "silent" transition to the process $\text{send}_d \langle M \rangle$; halt.

Further the process

$$P_5 \triangleq P_3 \mid P_4$$

where

$$P_4 \triangleq \operatorname{recv}_d(x); \operatorname{halt}$$

can halt after making only silent transitions.

Intuitively P_5 represents the protocol

 $P_2 \longrightarrow P_1: M$ (on channel c) $P_1 \longrightarrow P_4: M$ (on channel d) We can restrict access to channels.

The process new c; P creates a fresh channel c and can be used inside process P. No outside process can access c.

(c is like a bound variable whose scope is inside P)

We consider processes to be the same after renaming of bound names.

Consider the process

```
(new c; send<sub>c</sub>\langle M \rangle; halt) | (recv<sub>c</sub>(x); halt)
```

No communication happens between the two smaller processes.

The above process is the same as the following one. $(\mathsf{new}\ d;\mathsf{send}_d\langle M\rangle;\mathsf{halt}) \mid (\mathsf{recv}_c(x);\mathsf{halt})$ Hence **new** allows us to create channels for secure communication.

Consider the process

```
new c; (send<sub>c</sub>\langle M \rangle; halt | recv<sub>c</sub>(x); P | recv<sub>c</sub>(x); Q)
```

Communication can take place between first and second subprocess to create the process new c; $(P[M/x] | recv_c(x); Q)$

Or communication can take place between first and third subprocess to create the process new c; $(\operatorname{recv}_c(x); P \mid Q[M/x])$ Hence **new** allows us to create channels for secure communication.

Consider the process

```
new c; (send<sub>c</sub>\langle M \rangle; halt | recv<sub>c</sub>(x); P | recv<sub>c</sub>(x); Q)
```

Communication can take place between first and second subprocess to create the process new $c; (P[M/x] | \operatorname{recv}_c(x); Q)$

Or communication can take place between first and third subprocess to create the process new c; $(\operatorname{recv}_c(x); P \mid Q[M/x])$

However the process

 $(\operatorname{\mathsf{new}}\ c;(\operatorname{\mathsf{send}}_c\langle M\rangle;\operatorname{\mathsf{halt}}\mid\operatorname{\mathsf{recv}}_c(x);P))\mid\operatorname{\mathsf{recv}}_c(x);Q$ can only lead to the process $(\operatorname{\mathsf{new}}\ c;P[M/x])\mid\operatorname{\mathsf{recv}}_c(x);Q$

332-а

Channels can also be sent as messages. Consider the following protocol where c_{AB} is a freshly created channel whereas c_{AS} and c_{SB} are long term channels.

 $A \longrightarrow S : c_{AB} \text{ on } c_{AS}$

 $S \longrightarrow B : c_{AB}$ on c_{SB}

 $A \longrightarrow B : M$ on c_{AB}

can be represented as follows where F(y) is a process involving variable y.

$$A \triangleq \mathsf{new} \ c_{AB}; \mathsf{send}_{c_{AS}}\langle c_{AB} \rangle; \mathsf{send}_{c_{AB}}\langle M \rangle.\mathsf{halt}$$

$$S \triangleq \operatorname{recv}_{c_{AS}}(x); \operatorname{send}_{c_{SB}}\langle x \rangle; \operatorname{halt}$$

$$B \triangleq \operatorname{recv}_{c_{SB}}(x); \operatorname{recv}_{x}(y); F(y)$$

$$P \triangleq \mathsf{new} \ \boldsymbol{c}_{AS}; \mathsf{new} \ \boldsymbol{c}_{SB}; (A \mid S \mid B)$$

P makes silent transitions to new c_{AS} ; new c_{SB} ; F(M).

Processes can perform computations like

- encryption, decryption (we will deal with only symmetric key encryption)
- pairing, unpairing
- increments, decrements
- checking equality of messages

Processes can perform computations like

- encryption, decryption (we will deal with only symmetric key encryption)
- pairing, unpairing
- increments, decrements
- checking equality of messages

The process

recv_c (x_1, x_2, x_3) ; case x_1 of $\{y_1\}_K$: check $(y_1 == x_2)$; send_c $\langle y_1,$ succ $(x_3) \rangle$; halt

receives an input of the form $\{M\}_K, M, N$ on channel c and sends out y_1 , succ (x_3) on channel c.

The syntax

M ::=		term
	n	name
	(M,N)	pair
	0	zero
	succ (M)	successor
	$\{M_1,\ldots,M_k\}_N$	encryption
	x	variable

P ::=

 $\operatorname{send}_M \langle N_1, \ldots, N_k \rangle; P$ output $\operatorname{recv}_M(x_1,\ldots,x_k); P$ input halt halt $P \mid Q$ parallel composition repeat Preplication new n; Prestriction check (M == N); Pcomparison let (x, y) = M; Punpairing case M of 0: P, succ (x): Qinteger case analysis case *M* of $\{x_1, ..., x_k\}_N : P$ decryption

process

Intuitively, repeat P represents infinitely many copies of P running in parallel.

In other words we can consider repeat P to represent $P \mid P \mid P \mid \dots$

Consider

- $P \triangleq \operatorname{recv}_c(x); \operatorname{halt}$
- $P_1 \triangleq \operatorname{send}_c(M_1);$ halt
- $P_2 \triangleq \operatorname{send}_c(M_2);$ halt

The process

 $P_1 \mid P_2 \mid \mathsf{repeat} \ P$

can make silent transitions (internal communication) to create the process repeat P

A one message protocol using cryptography, where K_{AB} is a symmetric key shared between A and B for private communication.

 $A \longrightarrow B : \{M\}_{K_{AB}}$ on c_{AB}

This can be represented as

$$A \triangleq \operatorname{send}_{c_{AB}} \langle \{M\}_{K_{AB}} \rangle; \mathsf{halt}$$

$$B \triangleq \operatorname{recv}_{c_{AB}}(x)$$
; case x of $\{y\}_{K_{AB}} : F(y)$

$$P \triangleq \mathsf{new} \ \mathbf{K}_{AB}; (A \mid B)$$

The key K_{AB} is restricted, only A and B can use it.

The channel c_{AB} is public. Other principals may send messages on it or listen on it.

P can make silent transitions to new K_{AB} ; F(M).

Formal semantics

We now need to define how processes execute.

For example we would like

 $\operatorname{send}_c\langle M \rangle; P \mid \operatorname{recv}_c(x); Q \xrightarrow{\tau} P \mid Q[M/x]$

where τ denotes a silent action (internal communication).

Let fn(M) and fn(P) be the set of free names in term M and process P respectively.

Let fv(M) and fv(P) be the set of free variables in term M and process P respectively.

Closed processes are processes without any free variables.

Let $P \triangleq \text{new } c$; new K; recv_d(x); case x of $\{y\}_{K'}$: send_d $\langle\{y\}_{K}, z, c\rangle$; halt. We have

 $fn(\text{send}_d \langle \{y\}_K, z, c \rangle; \text{halt}) = \{c, d, K\}$ $fv(\text{send}_d \langle \{y\}_K, z, c \rangle; \text{halt}) = \{y, z\}$ $fn(\text{case } x \text{ of } \{y\}_{K'}: \text{send}_d \langle \{y\}_K, z, c \rangle; \text{halt}) = \{c, d, K, K'\}$ $fv(\text{case } x \text{ of } \{y\}_{K'}: \text{send}_d \langle \{y\}_K, z, c \rangle; \text{halt}) = \{x, z\}$ $fn(P) = \{d, K'\}$ $fv(P) = \{z\}$ $fn(\{y\}_K) = \{K\}$ $fv(\{y\}_K) = \{y\}$

First we define reduction relation > on closed processes:

repeat P	$> P \mid repeat \ P$	(R-Repeat)
check $(M == M); P$	> P	(R-Check)
$let\ (x,y) = (M,N); P$	> P[M/x, N/y]	(R-Let)
case 0 of $0: P$, succ $(x): Q$	> P	(R-Zero)
case succ (M) of $0: P$, succ $(x): Q$	> Q[M/x]	(R-Succ)
case $\{M\}_N$ of $\{x\}_N: P$	> P[M/x]	(R-decrypt)

When these rules cannot be applied, it means that the process cannot be simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0); P (comparison fails).

let (x, y) = 0; P (unpairing fails)

case (M, N) of 0: P, succ (x): Q (not an integer)

case (M, N) of $\{x, y\}_K : P$ (not an encrypted message)

case $\{M, N\}_{K'}$ of $\{x, y\}_K : P$ where $K \neq K'$

When these rules cannot be applied, it means that the process cannot be simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0); P (comparison fails).

let (x, y) = 0; P (unpairing fails)

case (M, N) of 0: P, succ (x): Q (not an integer)

case
$$(M, N)$$
 of $\{x, y\}_K : P$ (not an encrypted message)

case $\{M, N\}_{K'}$ of $\{x, y\}_K : P$ where $K \neq K'$

This is also based on the perfect cryptography assumption: distinct terms represent distinct messages.

A barb β is either

- a name n (representing input on channel n), or
- a co-name \overline{n} (representing output on channel n)

An action is either

- a barb (representing input or output to the outside world), or
- τ (representing a silent action i.e. internal communication)

We write $P \xrightarrow{\alpha} Q$ to mean that P makes action α after which Q is the remaining process that is left to be executed.

The first subprocess makes an output action on channel c.

We will represent it as $\operatorname{send}_c \langle M \rangle; P \xrightarrow{\overline{c}} \langle M \rangle P$.

 $\langle M \rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The first subprocess makes an output action on channel c.

We will represent it as $\operatorname{send}_c\langle M\rangle; P \xrightarrow{\overline{c}} \langle M\rangle P$.

 $\langle M \rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as $\operatorname{recv}_c(x); Q \xrightarrow{c} (x)Q$.

(x)Q is called an abstraction: it represents a commitment to input some x after which P will be executed.

The first subprocess makes an output action on channel c.

We will represent it as $\operatorname{send}_c\langle M\rangle; P \xrightarrow{\overline{c}} \langle M\rangle P$.

 $\langle M \rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as $\operatorname{recv}_{c}(x); Q \xrightarrow{c} (x)Q$.

(x)Q is called an abstraction: it represents a commitment to input some x after which P will be executed.

Abstractions and concretions can be combined:

 $\langle M \rangle P @ (x)Q = P \mid Q[M/x]$