
Formally an abstraction F is of the form

(x1, . . . , xk)P

where k ≥ 0 and P is a process.

A concretion C is of the form

(new n1, . . . , nl)〈M1, . . . ,Mk〉P

where n1, . . . , nl are names, l, k ≥ 0 and P is a process.

For F , (x1, . . . , xk)P and C , (new n1, . . . , nl)〈M1, . . . ,Mk〉Q

with {n1, . . . , nl} ∩ fn(P) = ∅ we define interaction of F and C as

F @ C , new n1; . . . new nl; (P [M1/x1, . . . ,Mk/xk] | Q)

C @ F , new n1; . . . new nl; (Q | P [M1/x1, . . . ,Mk/xk])

345

Formally an abstraction F is of the form

(x1, . . . , xk)P

where k ≥ 0 and P is a process.

A concretion C is of the form

(new n1, . . . , nl)〈M1, . . . ,Mk〉P

where n1, . . . , nl are names, l, k ≥ 0 and P is a process.

For F , (x1, . . . , xk)P and C , (new n1, . . . , nl)〈M1, . . . ,Mk〉Q

with {n1, . . . , nl} ∩ fn(P) = ∅ we define interaction of F and C as

F @ C , new n1; . . . new nl; (P [M1/x1, . . . ,Mk/xk] | Q)

C @ F , new n1; . . . new nl; (Q | P [M1/x1, . . . ,Mk/xk])

345-a

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F

346

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F

346-a

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F

346-b

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F

346-c

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F

346-d

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .

347

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .

347-a

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .

347-b

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .

347-c

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .

347-d

P > Q Q
α

−→ A
(C-Red)

P
α

−→ A

P
α

−→ A
(C-Par1)

P | Q
α

−→ A | Q

Q
α

−→ A
(C-Par2)

P | Q
α

−→ P | A

where

P1 | (x1, . . . , xk)P2 , (x1, . . . , xk)(P1 | P2)

P1 | (new n1, . . . , nk)〈M1, . . . ,Ml〉P2 , (new n1, . . . , nk)〈M1, . . . ,Ml〉(P1 | P2)

provided that x1, . . . , xk /∈ fv(P1) and n1, . . . , nk /∈ fn(P1)

348

For the previous example we have using (R-Succ):

case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt) > sendd〈0〉; halt

and using (C-Out):

sendd〈0〉; halt
d

−→ 〈0〉halt

hence using (C-Red):

case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)
d

−→ 〈0〉halt

hence using (C-Par2):

halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)
d

−→ halt | 〈0〉halt

= 〈0〉(halt | halt)

349

Consider P , (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)

We would like P
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

but not P
τ

−→ P1[0/x] | new n; (P2 | recvc(x);P3)

Hence we have the rule

P
α

−→ A α /∈ {n, n}
(C-New)

new n;P
α

−→ new n;A

where

(new m)(x1, . . . , xk)P , (x1, . . . , xk)new m;P

(new m)(new m1, . . . ,mk)〈M1, . . . ,Ml〉P , (new m,m1, . . . ,mk)〈M1, . . . ,Ml〉P

provided that m /∈ {m1, . . . ,mk}

350

Consider P , (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)

We would like P
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

but not P
τ

−→ P1[0/x] | new n; (P2 | recvc(x);P3)

Hence we have the rule

P
α

−→ A α /∈ {n, n}
(C-New)

new n;P
α

−→ new n;A

where

(new m)(x1, . . . , xk)P , (x1, . . . , xk)new m;P

(new m)(new m1, . . . ,mk)〈M1, . . . ,Ml〉P , (new m,m1, . . . ,mk)〈M1, . . . ,Ml〉P

provided that m /∈ {m1, . . . ,mk}

350-a

We have sendc〈0〉;P2
c

−→ 〈0〉P2

and recvc(x);P3
c

−→ (x)P3

hence sendc〈0〉;P2 | recvc(x);P3
τ

−→ 〈0〉P2 @ (x)P3 = P2 | P3[0/x]

Since τ /∈ {c, c}

hence new c; (sendc〈0〉;P2 | recvc(x);P3)
τ

−→ new c; (P2 | P3[0/x])

Hence (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

351

Consider P , (new K; sendc〈K〉; halt) | (recvc(x); sendd〈x〉; halt)

We have sendc〈K〉; halt
c

−→ (new)〈K〉halt

hence new K; sendc〈K〉; halt
c

−→ new K; (new)〈K〉halt = (new K)〈K〉halt

Also recvc(x); sendd〈x〉; halt
c

−→ (x)sendd〈x〉; halt

Hence

P
τ

−→ (new K)〈K〉halt @ (x)sendd〈x〉; halt = (new K)(halt | sendd〈K〉; halt)

352

Equivalence on processes

A test is of the form (Q,β) where Q is a closed process and β is a barb.

A process P passes the test (Q,β) iff

(P | Q)
τ

−→ Q1 . . .
τ

−→ Qn
β

−→ A

for some n ≥ 0, some processes Q1, . . . , Qn and some agent A.

Q is the ”environment” and we test whether the process together with the

environment inputs or outputs on a particular channel.

Testing preorder P1 v P2 iff for every test (Q,β), if P1 passes (Q,β) then P2

passes (Q,β).

Testing equivalence P1 ' P2 iff P1 v P2 and P2 v P1.

353

Secrecy

Consider process P with only free variable x.

We will consider x as secret if for all terms M,M ′ we have P [M/x] ' P [M ′/x].

I.e. an observer cannot detect any changes in the value of x.

Example Consider P , sendc〈x〉; halt.

x is being sent out on a public channel. Consider test (Q, d) where

environment Q , recvc(x); check (x == 0); sendd〈halt〉; halt.

We have P [0/x] | Q
τ

−→ halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt).

Hence P [0/x] passes the test. However P [succ (0)/x] fails the test.

Hence P does not preserve secrecy of x.

354

Information flow analysis for the Spi-calculus

We classify data into three classes

secret data which should not be leaked

public data which can be communicated to anyone

any arbitrary data

Subsumption relation on classes:

secret � any

public � any

T � T for T ∈ {secret, public, any}

355

An environment E provides information about the classes to which names and

variables belong.

We define typing rules for the following kinds of judgments

` E environment E is well formed

E ` M : T term M is of class T in environment E

E ` P process P is well typed in environment E

E.g. secret data should not be sent on public channels.

Data of level any should be protected as if it is of level secret, but can be

exploited only as of it had level public.

356

Our goal is to define typing rules to filter out processes that leak secrets.

Informally we would like to show that if environment E has only any variables

and public names and E ` P then P does not leak any variables x ∈ dom(E).

Our previous example:

P , sendc〈x〉; halt

Consider E = {x : any, c : public :: L1, d : public :: L2}

(L1 and L2 will be explained later.)

x is of level any but is sent out on c of level public, which will be forbidden by

our typing rules.

357

Consider protocol

A −→ S : A,B

S −→ A : {A,B,Na, {Nb}Ksb
}Ksa

A −→ B : {Nb}Ksb

A principal X may play the role of A in one session and of B in another session.

We need a clear way of distinguishing the messages received and their

components.

This is important only for messages sent on secret channels and for messages

encrypted with public keys.

We adopt the following standard format:

messages sent on secret channels should have three components of levels secret,

any and public respectively.

358

Consider protocol

B −→ A : Nb

A −→ B : {M,Nb}Kab

By replaying nonces, an attacker can find out whether the same M is sent

more than once, or different ones. Hence he gets

some partial information about the contents of the messages.

To prevent this we include an extra fresh nonce (confounder) in each message

encrypted with secret keys.

A −→ B : {M,Nb,Na}Kab

359

We adopt the following standard format for messages encrypted with secret

keys: {M1,M2,M3, n}K

where M1 has level secret, M2 has level any, M3 has level public,

and n is the confounder.

n can be used as confounder only in this term and nowhere else.

This information is remembered by the environment E.

I.e. if n : T :: {M1,M2,M3, n}K ∈ E then

we know that n is used as a confounder only in that message.

360

The typing rules

The empty environment is denoted ∅.

Well formed environments:

` ∅

` E x /∈ dom(E)

` E, x : T

` E

E ` M1 : T1 . . . E ` Mk : Tk

n /∈ dom(E)

E ` N : R

` E,n : T :: {M1, . . . ,Mk, n}N

361

Environment lookups and subsumption:

E ` M : T T v R

E ` M : R

` E x : T ∈ E

E ` x : T

` E n : T :: {M1, . . . ,Mk, n}N ∈ E

E ` n : T

362

` E

E ` 0 : public

E ` M : T

E ` succ (M) : T

E ` M : T E ` N : T

E ` 〈M,N 〉 : T

363

Encryption

E ` M1 : T . . . E ` Mk : T E ` N : public T = public if k = 0

E ` {M1, . . . ,Mk}N : T

E ` M1 : secret

E ` N : secret

E ` M2 : any E ` M3 : public

n : T :: {M1,M2,M3, n}N ∈ E

E ` {M1,M2,M3, n}N : public

364

