
E ` M : public E ` M1 : public . . . E ` Mk : public E ` P

E ` sendM 〈M1, . . . ,Mk〉;P

E ` M : secret E ` M1 : secret E ` M2 : any E ` M3 : public E ` P

E ` sendM 〈M1,M2,M3〉;P

Only public data may be sent on public channels.

On secret channels, data is always sent in the standard format we have agreed

upon.

We consider pairing as left-associative.

For example (M1,M2,M3,M4) is same as ((M1,M2),M3,M4)

365



Similar rules for inputs.

E ` M : public E, x1 : public, . . . , xk : public ` P

E ` recvM (x1, . . . , xk);P

E ` M : secret E, x1 : secret, x2 : any, x3 : public ` P

E ` recvM (x1, x2, x3);P

The appropriate class information for the input variables is added to the

environment, and the new environment is used for typing the remaining

process.

366



` E

E ` halt

E ` P E ` Q

E ` P | Q

E ` P

E ` repeat P

E, n : T :: L ` P

E ` new n;P

The newly created name can be chosen to be kept secret or can be revealed,

and can be chosen to used as a confounder in some message.

367



E ` M : T E ` N : R E ` P T ,R ∈ {public, secret}

E ` check (M == N);P

Equality checks are not allowed on data of class any to prevent implicit

information flow.

368



Example Consider P , recvc(y); check (x == y); sendc〈0〉; halt where x is the

data whose secrecy we are interested in.

Secrecy of x is not maintained. P [M/x] and P [M ′/x] are not equivalent for

M 6= M ′.

Consider test (Q, d) where Q , sendc〈M〉; recvc(z); sendd〈0〉; halt.

P [M/x] | Q passes the test:

P [M/x] | Q
τ

−→ check (M = M); sendc〈0〉; halt | recvc(z); sendd〈0〉; halt
τ

−→

halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt)

P [M ′/x] | Q does not pass the test.

369



Similarly, case analysis on data of class any are disallowed.

E ` M : T E, x : T , y : T ` P T ∈ {public, secret}

E ` let (x, y) = M ;P

E ` M : T E ` P E, x : T ` Q T ∈ {secret, public}

E ` case M of 0 : P , succ (x) : Q

370



Decryption

E ` L : T E ` N : public E, x1 : T , . . . , xk : T ` P T ∈ {secret, public}

E ` case L of {x1, . . . , xk}N : P

E ` L : T E ` N : secret T ∈ {secret, public}

E, x1 : secret, x2 : any, x3 : public, x4 : any ` P

E ` case L of {x1, x2, x3, x4}N : P

The confounder x4 in the second rule is assumed to be of type any because we

have no more information about it.

371



Typing implies noleak of information

Suppose

• ` E

• all variables in dom(E) are of level any and all names in dom(E) are of

level public.

• E ` P

• P has free variables x1, . . . , xk

• fn(Mi), fn(M ′
i) ⊆ dom(E) for 1 ≤ i ≤ k.

then P [M1/x1, . . . ,Mk/xk] ' P [M1/x1, . . . ,Mk/xk]

Well typed processes maintain secrecy of the free variables (x1, . . . , xk), i.e.

they are not leaked.

372



Our previous example P , recvc(y); check (x == y); sendc〈0〉; halt

We take E , {x : any, c : public :: {n}0}. c is not meant to be used as a

confounder, hence we have the dummy term {n}0.

We have ` E.

In order to show E ` P we need to find some T such that

E, y : public ` check (x == y); sendc〈0〉; halt.

But this is impossible because equality checks should not involve data of class

any.

Hence the process doesn’t type-check, as required.

373



Consider P , new K; new m; new n; sendc〈{m,x, 0, n}K〉; halt.

We take E , {x : any, c : public :: {n}0}. We have ` E.

To show E ` P we choose

E′ , E,K : secret :: {K}0,m : secret :: {m}0, n : secret :: {m,x, 0, n}K

and show that E ′ ` sendc〈{m,x, 0, n}K〉; halt.

This is ok because E ′ ` m : secret, E ′ ` x : any, E′ ` 0 : public, E ′ ` n : secret,

E′ ` K : secret and E ′ ` halt.

374


