EFM:public EFM:public ... EFMg:public EFP
E|—S€ndM<M1,...,Mk>;P

E =M :secret EF My :secret EF Ms:any FE & Ms:public EFP
El‘SGﬂdM<M1,M2,M3>;P

Only public data may be sent on public channels.

On secret channels, data is always sent in the standard format we have agreed

upon.

We consider pairing as left-associative.
For example (M7, My, M3, My) is same as ((M1, M), Ms, My)

365

Similar rules for inputs.

E =M :public E,zp:public,...,z : public P
EtFrecvpyr(x1, ..., x8); P

E = M :secret FE,xq:secret,xo : any, 3 : public P

EF I’eCVM(ZIZl, L2, 333); P

The appropriate class information for the input variables is added to the
environment, and the new environment is used for typing the remaining

process.

366

- F
FE F halt

EFP EFQ
EFP|Q

E+FP
E F repeat P

En:T:2LFP
E Fnew n; P

The newly created name can be chosen to be kept secret or can be revealed,

and can be chosen to used as a confounder in some message.

367

Er-M:T FFN:R ErP T, R € {public, secret}
E + check (M == N); P

Equality checks are not allowed on data of class any to prevent implicit

information flow.

368

Example Consider P £ recv,(y); check (z == y);send.(0); halt where z is the

data whose secrecy we are interested in.

Secrecy of x is not maintained. P[M /x] and P[M'/z] are not equivalent for
M+ M.

Consider test (@), d) where) = send.(M);recv.(z);sendy{0); halt.

P|M /z] | @ passes the test:

P[M/x] | @ = check (M = M);send.(0); halt | recv.(z); send4(0); halt ——

halt | sendg(0); halt —2 (0)(halt | halt)

P[M'/x] | Q does not pass the test.

369

Similarly, case analysis on data of class any are disallowed.

Er-M:T E,x:T,y:THP T € {public, secret}
Etlet (z,y) = M; P

EEM:T EFEHP Ex:TFHQ T € {secret, public}
E tcase M of 0: P, succ (z): Q

370

Decryption

EFL:T EFN:public E,x1:T,...,z: TFP T & {secret, public}
E tcase L of {x1,...,xp}n: P

E-L:T E+ N : secret T € {secret, public}

E,xq1 : secret,xo : any, xg : public,z4 : any = P

E tcase L of {x1,x2,x3,x4}n : P

The confounder x4 in the second rule is assumed to be of type any because we

have no more information about it.

371

Typing implies noleak of information
Suppose
o HF

e all variables in dom(FE) are of level any and all names in dom(FE) are of

level public.
e KN+ P
e P has free variables x1, ...,z
o fn(M;), fn(M]) C dom(F) for 1 <i<k.
then P|M;/x1,..., My /x| >~ P{Myi/x1,..., My /xg]

Well typed processes maintain secrecy of the free variables (x1,...,), i.e.

they are not leaked.

372

Our previous example P £ recv.(y); check (z == y);send.(0); halt

We take I/ = {z : any, ¢ : public :: {n}g}. ¢ is not meant to be used as a

confounder, hence we have the dummy term {n}.

We have + FE.

In order to show F P we need to find some 7" such that
E.,y : public - check (xz == y);send.(0); halt.

But this is impossible because equality checks should not involve data of class

any.

Hence the process doesn’t type-check, as required.

373

Consider P £ new K;new m;new n;send.({m,z,0,n}x);halt.

We take ' = {x : any,c: public :: {n}¢}. We have - E.

To show E = P we choose
E' 2 B, K :secret :: {K}o,m : secret :: {m}o,n : secret :: {m,z,0,n} g

and show that E' F send.({m,z,0,n}x); halt.

This is ok because F' F m : secret, &/ F 2 : any, B’ 0 : public, £’ - n : secret,
E’'+ K : secret and E’ I halt.

374

