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Organization

Lectures: Wednesday, 10:15 - 11:45

Tutorials: Friday, 10:15 - 11:00

Starting 12.05.06

Schein: Written examination
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Planned contents

• Buffer overflow attacks

−→ Prevention using program analysis

• Security issues in Java

• Type systems for safety

• Bytecode verification and proof carrying code

• Techniques for access control and information flow analysis
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Computer Security

Some goals

• Confidentiality of information

• Authenticity

• Preventing other improper behavior like not paying for services

• Ensuring availability of services

• Preventing damage of information
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Challenges

• Increasing complexity of software; frequent updates

• Untrusted programs

• Computer systems are not isolated

• Numerous possibilities for attacks: webpages with executables, emails,

cookies, . . .

• Financial cost of an insecurity could be huge
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The Morris Worm, 1988

• One of the first known internet worms.

• Among others it exploited a buffer overflow vulnerability in fingerd.

• A worm at an infected host copied itself to other hosts by exploiting

vulnerabilities. The number of copies running at a host slowed it down to

the point of being unusable.

• An estimated 6000 machines (10 % of hosts at that time) were infected.

• Huge financial losses were incurred because infected hosts were unable to

continue functioning.

New buffer overflow vulnerabilities still continue to be found.
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The MS-SQL Slammer worm, 2003

• Exploited a buffer overflow vulnerability in Micorsoft SQL server

announced in 2002.

• Affected more than 75000 hosts, most of them within the first 10 minutes.

The Code Red worm, 2001

• Exploited a buffer overflow vulnerability in Microsoft’s IIS web server.
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Buffer overflows

• The C language allows access to arbitrary memory locations through

improper use of pointers.

• This leads to a typical programming error of accessing a buffer (array)

beyond the space allocated for it.

• Typically exploited by stack smashing attacks involving overflowing buffers

on the stack to overwrite the return address.

• Data extracted from CERT advisories show that buffer overflows are

responsible for nearly half of todays vulnerabilities.
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Pointers and arrays in C

For any variable we can obtain the corresponding memory location using the &

operator. The * operator gives the value stored at a memory location.

main() {

int x = 10;

int ∗p;

printf (”x = %d\n”,x);

p = &x;

∗p = 20;

printf (”x = %d\n”, x);

}

Output:

x = 10

x = 20
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This leads to pointer arithmetic:

main() {

int x, y;

x = 10;

printf (”x = %d\n”,x);

∗((&y)+1) = 20;

printf (”x = %d\n”,x);

}

Output:

x = 10

x = 20

C allows access to arbitrary memory locations through pointers.

Here we need to know that x and y are allocated space on consecutive locations.
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The declaration

int x,y,z;

leads to allocation of space on the stack as follows.

decreasing memory
addresses

z

y

x

SP

top of stack

(Stack Pointer,
SP, %esp)
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Allocating space for arrays on the stack:

int a[10];

a is also the address where a[0] is stored. a[5]=10 is same as *(a+5)=10.

a
a[0]

a[9]
SP

SP

...
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Enough ingredients for errors introduced by careless programmers!

main() {

int x,a [10], i ;

x = 10;

printf (”x = %d\n”,x);

for ( i=0; i<=15; i++) a[i]=20;

printf (”x = %d\n”, x);

/∗ Code may require adjustment to

machine and compiler ∗/

}

x = 10

x = 20

Out of bound access in array a, leading to modification of value of x.

No checks enforced by the C language!
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Compare with Java −→ a strongly typed language

public class Array1 {

public static void main (String args []) {

int x, a [] = new int[10], i ;

x = 10;

System.out.println (”x=” + x);

for ( i=0; i<=15; i++) a[i]=20;

System.out.println (”x=” + x);

}

}

x=10

Exception in thread ”main” java.lang.ArrayIndexOutOfBoundsException: 10

at Array1.main(Array1.java:7)
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Exceptions may then be caught and some other action taken.

public class Array2 {

public static void main (String args []) {

int x, a [] = new int[10], i ;

x = 10;

System.out.println (”x=” + x);

for ( i=0; i<=15; i++)

try { a[ i]=20; } catch (Exception e) { }

System.out.println (”x=” + x);

}

}

x=10

x=10

15



Function calls and stack frames

• Each time a function is called, space must be allocated for the local

variables of the function. This region of the stack is called the stack frame

for this function call.

⇒ Use a Frame Pointer (FP, %ebp) to indicate the location of the current

frame. This allows easy access to the local variables at runtime.

• On return from a function call, execution must continue from the next

instruction after the function call.

⇒ Store the old instruction pointer (PC) in the stack frame.
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• On return from a function, the current stack frame is popped out and

execution continues with the previous stack frame.

⇒ Store the old FP on the stack.

variables
local

old FP
old IP
arg1

argn

other
values

SP

FP
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A simple example of function call.

/∗ function.c ∗/

void f ( int x, int y) {

int a,b,c;

}

int main () {

f (10, 20);

}

Let’s see the compiled code produced.

$ gdb function

. . .
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The caller:

(gdb) disassemble main

...

0x804832f <main+19>: push $0x14

0x8048331 <main+21>: push $0xa

0x8048333 <main+23>: call 0x8048314 <f>

...

The arguments are pushed on to the stack and the function is called.

And the callee. . .
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The caller:

(gdb) disassemble main

...

0x804832f <main+19>: push $0x14

0x8048331 <main+21>: push $0xa

0x8048333 <main+23>: call 0x8048314 <f>

...

The arguments are pushed on to the stack and the function is called.

And the callee. . .

19-a



0x8048314 <f>: push %ebp

0x8048315 <f+1>: mov %esp,%ebp

0x8048317 <f+3>: sub $0xc,%esp

0x804831a <f+6>: leave

0x804831b <f+7>: ret

• Save old FP, update FP

• Allocate space for local variables, do computations

• Restore FP, pop saved FP from stack

• Return (restore PC, pop saved PC from stack)
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At run time: pushing arguments

push $0x14

20

10

push $0xa

SP

FP

PC

SP

FP

PC
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Calling function: saving PC and updating PC

call p
q

20

10

SP

FP

PC

20

10

SP

FP

PC p

q
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Inside callee: saving FP and updating FP

20

10

SP

FP

PC

q

20

10

SP

FP

PC

q

push %ebp
mov %esp,%ebp
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Allocating space for local variables

20

10

SP

FP

PC

q

sub $0xc, %esp

a
b

c

20

10

SP

FP

PC

q
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End of callee: restoring FP and popping saved FP

20

10

SP

FP

PC

q

a
b

c

leave

mov %ebp, %esp

pop %ebp

equivalently:

20

10

SP

FP

PC

q
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Returning: restoring PC and popping saved PC

return
20

10

SP

FP

PC

q

20

10

SP

FP

PC q
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The return address is stored on the stack.

⇒ it can also be overwritten to point to arbitrary code!!!

void f () {

int a [10];

a[15] += 7;

}

main () {

int x = 10;

f ();

x = 20;

printf (”x=%d!\n”,x);

}

Output:

x=10!

We have skipped the instruction x = 20; !

• Where is the return address stored (a[15])?

• What should be the new return address (increment by 7)?
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Organization of the stack: a[0], . . . , a[9], old FP, old PC

Hence the return address is at the location a[11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

⇒ Look at the compiled code.

0x8048344 <f>: push %ebp

0x8048345 <f+1>: mov %esp,%ebp

0x8048347 <f+3>: sub $0x38,%esp

...

Space allocated after old FP is 0x38 = 56 = 4*14 bytes.

Hence return address is at address a[15]
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Organization of the stack: a[0], . . . , a[9], old FP, old PC

Hence the return address is at the location a[11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

⇒ Look at the compiled code.

0x8048344 <f>: push %ebp

0x8048345 <f+1>: mov %esp,%ebp

0x8048347 <f+3>: sub $0x38,%esp

...

Space allocated after old FP is 0x38 = 56 = 4*14 bytes.

Hence return address is at address a[15]
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Organization of the stack: a[0], . . . , a[9], old FP, old PC

Hence the return address is at the location a[11].

Not always!! Compiler optimizations may create blank spaces between array a

and the following data.

⇒ Look at the compiled code.

0x8048344 <f>: push %ebp

0x8048345 <f+1>: mov %esp,%ebp

0x8048347 <f+3>: sub $0x38,%esp

...

Space allocated after old FP is 0x38 = 56 = 4*14 bytes.

Hence return address is at address a[15]
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...

0x8048369 <main+23>: call 0x8048344 <f>

0x804836e <main+28>: movl $0x14,0 xfffffffc (%ebp)

0x8048375 <main+35>: sub $0x8,%esp

...

Instruction x = 20; requires 35 - 28 = 7 bytes.

Hence we put a[15] +=7 in the function f in order to skip execution of this

instruction.

⇒ Besides modifying data, we may cause arbitrary code to be executed!
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Weaknesses can be exploited by users by supplying appropriate inputs.

int main (int argc, char ∗argv[]) {

char s [1024];

strcpy(s ,argv [1]);

...

}

• An appropriate input is given to overwrite the return address,

• At the minimum, the program may abort abruptly.

• An ingenious attacker may get some desired code to be executed (shellcode)

by providing it as a part of the input string!
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Heap based overflows: buffer overflows in the heap instead of the stack.

char ∗p = (char ∗) malloc (1024);

Heap

Stack

Heap

Stack

End of heap

End of heap

p

bytes
1024

Instead of overwriting return addresses, an attacker may overwrite important

variables.
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Further errors arise because of improper use of string library functions.

In C, the end of a string is indicated by the null character.

The statement strcpy (s,t);

will keep copying characters starting from t till a null character is found,

irrespective of space allocated for s and t.

i = strlen (s);

tries to find the first null charachter beyond s.
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Some techniques for preventing buffer overflow attacks.

• Careful programming: e.g. use strncpy instead of strcpy.

• Make the stack region non-executable: however some applications make use

of an executable stack.

• Compiler tools: save the return address at a safe place (data region).

• Run time checks: use a preloaded library which provides safer versions of

standard unsafe functions.
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Detecting buffer overflow vulnerabilities

• Static program analysis: automated analysis of programs without running

them.

• an exact analysis of buffer overflow vulnerabilities is theoretically impossible.

=⇒ do approximate analysis:

• we fail to detect some vulnerabilities: unsafe approximation :-(

• or we declare certain good programs as vulnerable: safe approximation :-)

• or both :-((

• tradeoff between efficiency of analysis and precision of analysis.

34



Use of integer analysis

Most vulnerabilities are caused due to improper string manipulation.

Modify the program to include

• integer variables representing lengths of strings, overlaps between strings,

etc.

• safety conditions before all string manipulation instructions.

Use well-known integer analysis algorithms to verify the safety conditions.

=⇒ we reduce string analysis problem to integer analysis problem :-)
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Ideas: Dor, Rodeh and Sagiv

Original C code

char s [10];

s [15] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

assert (15 < sAlloc);

s [15] = ’a ’;

The integer variable sAlloc remembers the space allocated for string s.

The statement assert(15 < sAlloc); says that the program should abort here if

sAlloc ≤ 15.

We use an integer analysis algorithm to check that the assert conditions are

satisfied.
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Handling pointer arithmetic.

Original C code

char s [10];

char ∗p;

p = s + 7;

p[5] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

char ∗p; int pAlloc = 0;

assert (7 <= sAlloc);

p = s + 7; pAlloc = sAlloc - 7;

assert (5 < pAlloc);

p[5] = ’a ’;

The second assert condition does not hold, as desired.

37



Handling pointer arithmetic.

Original C code

char s [10];

char ∗p;

p = s + 7;

p[5] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

char ∗p; int pAlloc = 0;

assert (7 <= sAlloc);

p = s + 7; pAlloc = sAlloc - 7;

assert (5 < pAlloc);

p[5] = ’a ’;

The second assert condition does not hold, as desired.
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Complex control flow constructs are automatically handled.

char s [10];

int i ;

for ( i=0; i<=15; i++) {

s [ i ] = ’a ’;

}

char s [10]; int sAlloc = 10;

int i ;

for ( i=0; i <=15; i++) {

assert (i < sAlloc);

s [ i ] = ’a ’;

}

The asserted condition will be violated at some point during the execution of

the program, as desired.
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String manipulation functions like strcpy, strlen, strcat should be treated

directly, without analyzing their code.

char s [10];

char t [10];

strcpy (s , t );

This code is vulnerable.

Cannot be detected from information about sAlloc and tAlloc.

Need further variables:

sIsNull s is a null terminated string (boolean)

sLen length of s
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Instrumented code

char s [10]; int sAlloc=10, sIsNull=false, sLen;

char t [10]; int tAlloc=10, tIsNull=false, tLen;

assert (tIsNull && tLen < sAlloc)

strcpy (s , t );

sIsNull=true; sLen=tLen;

The asserted condition is violated, as desired.
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char ∗p; int pAlloc=0, pIsNull=false, pLen;

char s [20]; int sAlloc=20, sIsNull=false, sLen;

p=”Hello World!”; pAlloc=13; pIsNull=true; pLen=12;

assert(pIsNull && pLen < sAlloc)

strcpy(s ,p);

sIsNull=true; sLen=pLen;

The asserted condition holds, as desired.
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Dealing with string overlaps.

char ∗p, ∗q, s [20], t [20]; ... instrumentation code ...

p=”Hello World!”; ...

q=s+6; ...

/* here qIsNull == sIsNull == false */

strcpy(s ,p); sIsNull=true; sLen=pLen;

/* here sIsNull == true, qIsNull == false */

assert (qIsNull && qLen < tAlloc)

strcpy(t ,q); ...

The asserted condition for second strcpy fails :-(

After the first strcpy, the variables qIsNull and qLen are not updated.

=⇒ need further variables for keeping track of overlaps between strings.
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Dealing with string overlaps.

char ∗p, ∗q, s [20], t [20]; ... instrumentation code ...

p=”Hello World!”; ...

q=s+6; ...

/* here qIsNull == sIsNull == false */

strcpy(s ,p); sIsNull=true; sLen=pLen;

/* here sIsNull == true, qIsNull == false */

assert (qIsNull && qLen < tAlloc)

strcpy(t ,q); ...

The asserted condition for second strcpy fails :-(

After the first strcpy, the variables qIsNull and qLen are not updated.

=⇒ need further variables for keeping track of overlaps between strings.

42-a



Putting together

The required list of variables:

sAlloc space allocated for string ccodes

sIsNull whether string s is null terminated

sLen length of string s

s overlaps t whether strings s and t point inside the same allocated buffer

s diff t amount of overlap between strings s and t

s overlaps t is same as t overlaps s.

s diff t = -t diff s.
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Schema for instrumenting the C code.

C statement =⇒

assert (condition)

C statement

update statements

Clean program: all the string operations have a well defined output (according

to standard specifications.)

The instrumentation preserves the bahaviour of clean C programs.

In a program is unclean, the condition for the corresponding statement is

violated at some time during execution.
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Allocation

C statement

char s [20];

condition

true

update

sAlloc = 20;

sIsNull = false;

FOREACH a

a overlaps s = false

No safety conditions required.

The string is not null-terminated and has no overlap with any other string.
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Allocation

p = malloc(exp) true

if (p)

pAlloc = exp;

else pAlloc = 0;

pIsNull = false;

FOREACH a

a overlaps p = false;

If allocation fails then no space is allocated for the string.
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Constant string assignment

s = ”some string”; true

sAlloc = 12;

sIsNull = true;

sLen = 11;

FOREACH a

s overlaps a = false;

No assertion conditions.

The string is null terminated and has no overlap with other strings.

Safe even with other pointers to the same string constant, as no updates are

allowed in this region of the memory.
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Pointer arithmetic For simplicity consider only exp ≥ 0

C statement

p = q + exp;

condition

exp <= qAlloc

update

pAlloc = qAlloc - exp;

p overlaps q = true; p diff q = exp;

FOREACH a

p overlaps a = q overlaps a;

p diff a = q diff a + exp;

...
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...

if (qIsNull && qLen >= exp) {

pIsNull = true; pLen = qLen - exp;

} else RECOMPUTE (p);

#define RECOMPUTE (s)

sLen = strlen(s);

sIsNull = (sLen < sAlloc ? true : false)

/∗ however strlen cannot be analyzed precisely! ∗/

a q p

pa q

0

0 0

case 1

case 2
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String update We consider only i ≥ 0

C statement

s [ i ] = exp;

condition

i < sAlloc

Update

if (exp == 0) {

if (!sIsNull || sLen > i) {

sIsNull = true;

sLen = i;

}

FOREACH a

DESTRUCTIVE UPDATE (a,s)

}

s[0]

0

s[i]

s[0]

0

s[i]

case 1

case 2
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else {

if (sIsNull && i == sLen)

RECOMPUTE (s);

FOREACH a

DESTRUCTIVE UPDATE (a,s);

}

s[0] s[i]

0
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DESTRUCTIVE UPDATE

The string s has been modified and variables sIsNull and sLen have been

updated. The corresponding variables for overlapping strings need to be

updated.

#define DESTRUCTIVE UPDATE (a,s)

if (a overlaps s)

if (sIsNull && a diff s <= sLen &&

(!aIsNull || a diff s >= −aLen)) {

aIsNull = true;

aLen = sLen − a diff s;

} else RECOMPUTE (a);

as

0

s

0

a

old aLen
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Library functions: strcpy

C statement

strcpy (s , t );

condition

tIsNull & tLen < sAlloc

update

sIsNull = true;

sLen = tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

The copied string should be null terminated and the destination should have

enough space.
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Library functions: strcat

C statement

strcat (s , t );

condition

sIsNull && tIsNull

&& tLen + sLen < sAlloc

update

sLen = sLen + tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

Both the source and destination strings should be null terminated before

concatenation.

Normal functions: to be discussed.

54



Library functions: strcat

C statement

strcat (s , t );

condition

sIsNull && tIsNull

&& tLen + sLen < sAlloc

update

sLen = sLen + tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

Both the source and destination strings should be null terminated before

concatenation.

Normal functions: to be discussed.
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Given a C program, we have shown how to compute an instrumented C

program which preserves the semantics.

If the original C program is clean then the instrumented C program has the

same behaviour and all assertions always hold.

If the original C program has an unclean expression then the corresponding

assertion will be false at some time.

Next, we use integer analysis algorithms to check whether any of the assertions

are violated.
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A program state at a certain point of time during the program execution tells

us the value of each program variable at that time.

Execution of an instruction leads to a modification in the program state.

Each program point can be reached several times during execution (loops).

Hence several program states are possible at each program point.

Goal: for each program point, compute an upper approximation of the set of

possible program states.
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Upper approximation of the set of possible states is a safe approximation.

Scenario 1:

char s [20];

for ( i=0; i<10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [ j ] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(9, 18)

Suppose our analysis tells us that at this program point:

0 ≤ i ≤ 9∧0 ≤ j ≤ 18 upper approximation

We conclude that the program is clean safe
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Upper approximation of the set of possible states is a safe approximation.

Scenario 2:

char s [20];

for ( i=0; i<10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [ j ] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(9, 18)

Suppose our analysis tells us that at this program point:

0 ≤ i < ∞∧0 ≤ j < ∞ upper approximation

We conclude that the program is not clean safe
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Upper approximation of the set of possible states is a safe approximation.

Scenario 3:

char s [20];

for ( i=0; i<=10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [ j ] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(10, 20)

We compute upper approximation of the set of possible states.

Hence our analysis should always tell us that j can become 20.

We conclude that the program is not clean safe
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We transform the instrumented program to a program with only integer

variables =⇒ further safe approximation.

e1 is non-integer variable:

e1 = e2; =⇒ ;

e contains non-integer variables and constants:

x = e; =⇒ x = ?;

if (e) s1 else s2 =⇒ if (?) s1 else s2

The expression ? can take all possible values non-deterministically.

(In practice, use a special uninitialized variable in its place.)

Safe approximation: all executions of the original program are still allowed

after approximation.
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Instrumented program

char s [20]; int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

s [ j ] = ’a ’; if (97 == 0) ...

}

Corresponding integer program

int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

if (97 == 0) ...

}
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Instrumented program

char s [20]; int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

s [ j ] = ’a ’; if (97 == 0) ...

}

Corresponding integer program

int sAlloc=20, sIsNull=false, sLen;

for ( i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

if (97 == 0) ...

}
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This may involve some safe approximation

Instrumeted program:

char s [10], ∗t; ...

t = ”Hello!”; tAlloc = 7; tIsNull = 0; tLen=6; ...

strcpy (s , t ); ...sLen=tLen

if (s[0]==72) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}

Integer program:

... int any;

tAlloc = 7; tIsNull = 0; tLen=6; ...

...sLen=tLen

if (any ) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}
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This may involve some safe approximation

Instrumeted program:

char s [10], ∗t; ...

t = ”Hello!”; tAlloc = 7; tIsNull = 0; tLen=6; ...

strcpy (s , t ); ...sLen=tLen

if (s[0]==72) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}

Integer program:

... int any;

tAlloc = 7; tIsNull = 0; tLen=6; ...

...sLen=tLen

if (any ) i = 5; else i = 6;

s [ i ] = 0; if (0==0) if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}
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Program analysis for integers relations

Our methodology:

Program

Analysis problem

Constraints/equations

Precise analysis interpretation

Constraints/equations
over simpler domain

Approximate analysis

abstract

Precise analysis: what values are taken by

variable x at a certain

program point?

infinite domain: Z

Approximate analysis: does variable x ever take a

negative value at a certain

program point?

finite domain: {+,−, 0}
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We consider a set Vars of variables ranging over integers.

Program consists of statements of the form

NOP ;

Assignments x = e;

Conditions if (e) s1 else s2

Jumps goto L

While and for loops: translated using conditions and goto statements.
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We represent programs using control flow graphs (CFGs).

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

Distinguished start and stop nodes.

Edges k are of the form (u, l, v)

where u and v are nodes and label l

is an assignment or a condition.
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The set of possible states state of the program is

S = Vars → Z

The evaluation of an arithmetic expression e under state ρ ∈ S is denoted

[[e]] ρ : Z

An edge k = (u, l, v) induces a partial transformation on program states. The

transformation depends only on the label l.

[[k]] ρ = [[l]] ρ

where [[l]] : S → S

[[;]] ρ = ρ;

[[x = e;]] ρ = ρ ⊕ {x 7→ [[e]] ρ}

[[e1 ≥ e2]] ρ = ρ if [[e1]] ρ ≥ [[e2]] ρ
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A path π is a sequence of consequetive edges in the CFG.

u0 u1

l2 ln−1

un

l1 ln... un−1

π = k1, . . . , kn where each ki is of the form (ui−1, li, ui).

We write π : u0 →∗ un

The transformation induced by a path is the composition of the

transformations induced by the edges.

[[π]] = [[kn]] ◦ . . . ◦ [[k1]]

Each node can be reached through possibly infinitely many paths, leading to

infinitely many different states at each program point.

We are interested in the set of all such states at each program point.
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Suppose we know that a set V of states is possible at a node u.

By following an edge k = (u, , v), a new set of states becomes possible at node

v. This set is denoted [[k]]] V = [[l]]] V : 2S → 2S .

We define abstract transformation

[[l]]] V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

As before, [[k1, . . . , kn]]] V = ([[kn]]] ◦ . . . ◦ [[k1]]
] )V .

At the start node, all states are possible.

For each node v we want to compute the set

V∗[v] =
⋃
{[[π]]] S | π : start →∗ v}
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Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]

0 −∞ < i, j < ∞

1 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20

How to compute the sets V∗[v] in general?

In general they are not computable!
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We set up a constraint system.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[0]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[0]

V[4] ⊇ [[i > 10]] V[1]

The least solution (wrt ⊆) of the constraints is exactly V∗.
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We set up a constraint system.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[0]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[0]

V[4] ⊇ [[i > 10]] V[1]

The least solution (wrt ⊆) of the constraints is exactly V∗.
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The least solution (wrt ⊆) of the constraints is exactly V∗.

Is this always true?

Does such a constraint system always have a least solution?

Is it computable? Efficiently?
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An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅

Z × Z

V[1] ∅

{0} × Z {0, 1} × Z

V[2] ∅

{0} × Z {0, 1} × Z . . .

V[3] ∅

{(0, 0)} {(0, 0), (1, 2)}

V[4] ∅
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An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
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j = 2 ∗ i;
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V[0] ∅ Z × Z
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Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.

start

0

1 2

3

4 5
stop

i < 0 i ≥ 0

i > 10

i ≤ 10

i > 10

i ≤ 10

i = i + 1; i = i + 1;

0 ∅ Z Z

1 ∅ Z
−

Z

2 ∅ Z
+

Z
+

3 ∅ Z
+

Z
+

4 ∅ Z
−

Z

5 ∅ Z
+

Z
+

Interpretation of our result:

the values of i at node 1 is included in Z

the values of i at node 2 is included in Z
+

This information we obtain is accurate.
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In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

We require an ordering v on the elements of this domain.

∅ v Z
− ∅ v Z

+
Z
− v Z Z

+ v Z

Read x v y as ”y is imprecise information compared to x”.

We further require operations like least upper bounds.

Z
− t Z

+ = Z
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Recall: a set D with relation v is a partial order if the following conditions

hold for all x, y, z ∈ D.

• Reflexivity: x v x.

• Antisymmetry: x v y and y v x then x = y.

• Transitivity: if x v y and y v z then x v z.
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An element d ∈ D is called an upper bound of a set X ⊆ D if x v d for all

x ∈ X.

d ∈ D is called least upper bound of X ⊆ D if

• d is an upper bound of X

• d v d′ for every upper bound d′ of X

A partial order (D,v) is called a complete lattice if every X ⊆ D has a least

upper bound
⊔

X.

We write x t y for
⊔
{x, y}.

For (2S ,⊆) we have
⊔

X =
⋃

X.
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Some complete lattices.

>

⊥
∅

Z
+

Z
−

Z

Z
− = {x ∈ Z | x < 0}

Z
+ = {x ∈ Z | x ≥ 0}

Z × Z
+

Z
+ × Z

−
Z
− × Z

+
Z

+ × Z
+

Z
+ × ZZ × Z

−

Z
− × Z

−

Z
− × Z

∅

Z × Z
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An infinite complete lattice : (2Z,⊆).

{0} {1} {2}{−1}

{0,−1} {0, 1} {0, 2} {1, 2}

{0, 1, 2}

∅

Z

...

... ...
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Every complete lattice has

• a top element: > =
⊔

D

• a bottom element: ⊥ =
⊔

∅

Further every X ⊆ D has a greatest lower bound
d

X.

For (2S ,⊆) we have
d

X =
⋂

X.

Consider the set of lower bounds of X:

L = {l ∈ D | ∀x ∈ X, l ≤ x}

and define

g =
⊔

L

Claim: g is the greatest lower bound of X.
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(1)

g is a lower bound of X:

Consider any x ∈ X.

l ≤ x for all l ∈ L, i.e. x is an upper bound of L.

Hence g =
⊔

L v x.

(2)

g is the greatest lower bound of X:

Let l be any other lower bound of X.

Then l ∈ L.

Hence l v
⊔

X = g.
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A function f : D1 → D2 is called monotone if:

f(x) v f(y) whenever x v y

The function f : Z → Z defined as f(x) = x + 1 is monotone.

Note: (Z,≤) is not a complete lattice.

The transformations induced by the program edges are monotone:

Recall: [[l]]] : 2S → 2S

[[l]]] V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

Hence if V1 ⊆ V2 then [[l]]] V1 ⊆ [[l]]] V2.
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Some facts:

If f : D1 → D2 and g : D2 : D3 are monotone then the composition

g ◦ f : D1 → D3 is monotone.

If D2 is a complete lattice then the set [D1 → D2] of monotone functions

f : D1 → D2 is a complete lattice,

where f v g iff f(x) v g(x) for all x ∈ D1.

For F ⊆ [D1 → D2] we have
⊔

F = f with f(x) =
⊔
{g(x) | g ∈ F} .
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For our program analysis problem, we want the least solution of the constraint

system

V[0] ⊇ S (0 is the start node)

V[v] ⊇ [[l]]] V[u] for every edge (u, l, v).

We have the domain D = 2S . Choose a variable for each set V[v].

We have a constraint system of the form

xi w fi(x1, . . . , xn) (1 ≤ i ≤ n)

Since D is a lattice, D
n is also a lattice where

(d1, . . . , dn) v (d′1, . . . , d
′
n) iff di v d′i for 1 ≤ i ≤ n

The functions fi : D
n → D are monotone.
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Define F : D
n → D

n as

F (y) = (f1(y), . . . , fn(y)) where y = (x1, . . . , xn)

F is also monotone.

We need least solution of y w F (y).

Idea: use iteration

Start with the least element ⊥ and compute the sequence

⊥, F (⊥), F 2(⊥), F 3(⊥), . . ..

Do we always reach the least solution in this way?
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Example: the complete lattice of Booleans: D = {⊥,>}.

Constraint system:

x w y∨z

y w x∧y∧z

z w >

The iteration:

x ⊥

⊥ > >

y ⊥

⊥ ⊥ ⊥

z ⊥

> > >

We have F 2(⊥) = F 3(⊥).
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Such an iteration produces an ascending chain

⊥ v F (⊥) v F 2(⊥) v F 3(⊥) . . .

By induction: (1) Clearly ⊥ v F (⊥).

(2) Further if F i(⊥) v F i+1(⊥) then by monotonicity

F i+1(⊥) v F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) v x.

Is it also the least solution of F (x) v x ?

Yes ...
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Claim: If a is a solution of F (x) v x then F k(⊥) v a for all k.

By induction: Clearly ⊥ v a

Further if F k(⊥) v a then by monotonicity we have

F k+1(⊥) v F (a) v a.

Hence if F k+1(⊥) = F k(⊥) for any k then F k(⊥) is least solution of F (x) v x.

Such a k always exists if the lattice is finite.

What in case of infinite lattices?
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start

0

stop

i=0;

i=i+2;1

Constraint system:

V[0] ⊇ Z

V[1] ⊇ {0} ∪ {x+2 | x ∈ V[1]}

The least solution:

V[0] = Z and V[1] = {2n | n ≥ 0}.

Iteration doesn’t terminate:

⊥ F (⊥) F 2(⊥) F 3(⊥)

V[0] ∅ Z Z Z . . .

V[1] ∅ {0} {0, 2} {0, 2, 4}
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Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D → D has a least

fixpoint a.

Fixpoint: an element x such that f(x) = x.

Prefixpoint: an element x such that f(x) v x.

Let P = {x ∈ D | f(x) v x} (the set of prefixpoints).

The least fixpoint of f is a =
d

P .

(1) a ∈ P :

f(a) v f(d) v d for all d ∈ P .

=⇒ f(a) is a lower bound of P .

=⇒ f(a) v a.
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=⇒ f(a) is a lower bound of P .

=⇒ f(a) v a.
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=⇒ a is the least prefixpoint.

(2) f(a) = a:

f(a) v a, from (1)

=⇒ f2(a) v f(a), by monotonicity

=⇒ f(a) ∈ P

=⇒ a v f(a)

Hence a is the least prefixpoint and is also a fixpoint.

Hence a is also the least fixpoint.
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Example 1: Consider partial order D1 = N with 0 v 1 v 2 v . . ..

The function f(x) = x+1 is monotonic.

However it has no fixpoint.

Actually D1 is not a complete lattice.

Example 2: Now we consider D2 = N ∪ {∞}.

This is a complete lattice.

The function f(x) = x+1 is again monotonic.

The only fixpoint is ∞: ∞+1 = ∞.
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Abstract Interpretation: Cousot, Cousot 1977

We use a suitable complete lattice as the domain of abstract values.

Example: intervals as abstract values:

start

0

1

stop

23

i ≤ 10i > 10

i = 0;

i = i + 2;

I[0] ⊥ [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

I[1] ⊥ [0, 0] [0, 2] [0, 12] [0, 12]

I[2] ⊥ [0, 0] [0, 2] . . . [0, 10] [0, 10]

I[3] ⊥ ⊥ ⊥ [12, 12] [12, 12]

The analysis guarantees e.g. that at node 1 the value of i is always in the

interval [0, 12].
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We have the set of concrete states S = (Vars → Z).

We choose a complete lattice D of abstract states.

We define an abstraction relation

∆ : S × D

with the condition that

ρ ∆ a ∧ a v b =⇒ ρ ∆ b

bv

∆

ρ

a

∆

The concretization function: γ(a) = {ρ | ρ ∆ a}.
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Example: For a program on two integer variables, Vars = {x, y}.

The concrete states are from the set S = (Vars → Z) (or equivalently Z
2).

For interval analysis, we choose the complete lattice

DI = (Vars → I)⊥ = (Vars → I) ∪ {⊥}

where I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞}, l ≤ u} is the set of intervals.

l1 u1

u2l2

Partial order on I: [l1, u1] v [l2, u2] iff l1 ≥ l2 and u1 ≤ u2

(As usual, −∞ v n v ∞ for all n ∈ Z.)
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Partial order on Vars → I: D1 v D2 iff D1(x) v D2(x).

Extension to (Vars → I)⊥: ⊥ v D for all D.

(Vars → I)⊥ is a complete lattice. (Vars → I) is not.

In particular we define [l1, u1] t [l2, u2] = [l1 u l2, u1 t u2].

l2

u1l1

u2

u1 t u2
l1 u l2

⊥ represents the “unreachable state”: maps every variable to the “empty

interval”.
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The abstraction relation:

ρ ∆ D iff D 6= ⊥ and ρ(x) ∆ D(x).

where n ∆ [l, u] iff l ≤ n ≤ u.

This satisfies the required condition:

Suppose ρ ∆ D1 and D1 v D2.

=⇒ D1 6= ⊥ and D2 6= ⊥.

ρ(x) ∆ D1(x) and D1(x) v D2(x) for each x.

=⇒ ρ(x) ∆ D1(x) for each x.

ρ(x)

D1(x)

D2(x)

.
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The abstraction relation:

ρ ∆ D iff D 6= ⊥ and ρ(x) ∆ D(x).
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ρ(x)
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D2(x)

.
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The concretization function:

γ(⊥) = {}

γ(D) = {ρ | ρ(x) ∆ D(x)}, for D 6= ⊥

γ({x 7→ [3, 5], y 7→ [0, 7]}) = {{x 7→ 3, y 7→ 0}, {x 7→ 3, y 7→ 1},

. . . {x 7→ 3, y 7→ 7}

. . . {x 7→ 5, y 7→ 0} . . . {x 7→ 5, y 7→ 7}}
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Abstraction of the partial transformation induced by edges.

Recall the edges k = (u, l, v) induce a partial transformation on concrete states:

[[k]] = [[l]] : S → S

Now on our chosen domain D we define a monotonic abstract transformation:

[[k]]] = [[l]]] : D → D

The abstract transformation should simulate the concrete transformation:

if ρ ∆ a and [[l]] ρ is defined then [[l]] ρ ∆ [[l]]] a.

ρ

a [[k]]]

[[k]]

∆ ∆

98



Abstract transformation for interval analysis.

For concrete operators � we define monotonic abstract operators �] such that

x1 ∆ a1 ∧ . . . ∧ xn ∆ an =⇒ �(x1, . . . , xn) ∆ �](a1, . . . , an)

addition: [l1, u1] +] [l2, u2] = [l1 + l2, u1 + u2].

+ ∞ = ∞

+ −∞ = ∞

// ∞ + −∞ is undefined.

substraction: −] [l, u] = [−u,−l]
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Multiplication: [l1, u1] ∗] [l2, u2] = [m,n] where

m = l1l2 u l1u2 u l2u1 u l2u2

n = l1l2 t l1u2 t l2u1 t l2u2

Example: [1, 3] ∗] [5, 8] = [5, 24]

[−1, 3] ∗] [5, 8] = [−8, 24]

[−1, 3] ∗] [−5, 8] = [−15, 24]

[−1, 3] ∗] [−5,−8] = [−24, 5]
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Equality test:

[l1, u1] ==] [l2, u2] =







[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 or u2 < l1

[0, 1] otherwise

Example:

[7, 7] ==] [7, 7] = [1, 1]

[1, 7] ==] [9, 12] = [0, 0]

[1, 7] ==] [1, 7] = [0, 1]
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Inequality test:

[l1, u1] <] [l2, u2] =







[1, 1] if u1 < l2

[0, 0] if u2 < l1

[0, 1] otherwise

Example:

[1, 7] <] [9, 12] = [1, 1]

[9, 12] <] [1, 7] = [0, 0]

[1, 7] <] [6, 8] = [0, 1]
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Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]] D = D(x)

[[n]]] D = [n, n]

[[�(e1, . . . , en)]]] D = �]([[e1]]
] D, . . . , [[en]]] D)

Fact: ρ ∆ D and [[e]] ρ is defined =⇒ [[e]] ρ ∆ [[e]]] D.

Case e is x: since ρ ∆ D hence [[x]] ρ = ρ(x) ∆ D(x) = [[x]]] D

Case e is n: [[n]] ρ = n ∆ [n, n] = [[n]]] D

Case e is �(e1, . . . , en) : since each [[ei]] ρ ∆ [[ei]]
] D hence

[[�(e1, . . . , en)]] ρ = �([[e1]] ρ, . . . , [[en]] ρ)

∆

�]([[e1]]
] D, . . . , [[en]]] D) = [[�](e1, . . . , en)]]] D
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Finally, the monotonic abstract transformations induced by edges

[[l]]] ⊥ = ⊥

For D 6= ⊥, [[;]]] D = D

[[x = e;]]] D = D ⊕ {x 7→ [[e]]] D}

[[e]]] D =







⊥ if [[e]]] D = [0, 0]

D otherwise

Next we must check the condition:

ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]] D = D1 =⇒ ρ1 ∆ D1.

Clearly D 6= ⊥ here.
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To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]] D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

Case l is x = e;

ρ1 = ρ ⊕ {x 7→ [[e]] ρ} and D1 = D ⊕ {x 7→ [[e]]] D}

As [[e]] ρ ∆ [[e]]] D hence ρ1 ∆ D1.

Case e is some condition e

Since the tranformation [[e]] ρ is defined,

hence the expression evaluation [[e]] ρ 6= 0, and ρ1 = ρ.

Since ρ ∆ D,

hence the abstract expression evaluation [[e]]] D 6= [0, 0], and D1 = D.

105



To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]] D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

Case l is x = e;

ρ1 = ρ ⊕ {x 7→ [[e]] ρ} and D1 = D ⊕ {x 7→ [[e]]] D}

As [[e]] ρ ∆ [[e]]] D hence ρ1 ∆ D1.

Case e is some condition e

Since the tranformation [[e]] ρ is defined,

hence the expression evaluation [[e]] ρ 6= 0, and ρ1 = ρ.

Since ρ ∆ D,

hence the abstract expression evaluation [[e]]] D 6= [0, 0], and D1 = D.

105-a



To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]] D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

Case l is x = e;

ρ1 = ρ ⊕ {x 7→ [[e]] ρ} and D1 = D ⊕ {x 7→ [[e]]] D}

As [[e]] ρ ∆ [[e]]] D hence ρ1 ∆ D1.

Case e is some condition e

Since the tranformation [[e]] ρ is defined,

hence the expression evaluation [[e]] ρ 6= 0, and ρ1 = ρ.

Since ρ ∆ D,

hence the abstract expression evaluation [[e]]] D 6= [0, 0], and D1 = D.

105-b



Recall, for a path π = k1 . . . kn,

[[π]] ρ = ([[kn]] ◦ . . . ◦ [[k1]] )ρ

[[π]]] D = ([[kn]]] ◦ . . . ◦ [[k1]]
] )D

We conclude from above:

if ρ ∆ D and [[π]] ρ is defined then [[π]] ρ ∆ [[π]]] D.

ρ

∆

D

∆ ∆ ∆ ∆ ∆

[[k2]]
]

[[kn]][[k3]][[k2]][[k1]]

[[k3]]
] [[kn]]][[k1]]

]

...
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Merge over All Paths (MOP):

D∗[v] =
⊔

{[[π]]] > | π : start →∗ v}

For any initial concrete state ρ and path π : start →∗ v, if [[π]] ρ is defined then

[[π]] ρ ∆ D∗[v]

Hence D∗[v] abstracts all states possible at node v.

To compute it, we use the constraint system D∗.

D[start] w >

D[v] w [[k]]] D[u] for edge k = (u, l, v)

How are the two related?
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Merge over All Paths (MOP):

D∗[v] =
⊔

{[[π]]] D0 | π : start →∗ v}

Theorem: Kam,Ullman 1975

Let D be the smallest solution of the constraint system

D[start] w D0

D[v] w [[k]]] D[u] for edge k = (u, l, v)

Then we have

D[v] w D∗[v] for every v

In other words: D[v] w [[π]]] D0 for every π : start →∗ v
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Proof: induction on the length of π:

Case π = ε (empty path).

[[π]]] D0 = D0 v D[start]

Induction step: π = π′k for k = (u, l, v).

[[π′]]] D0 v D[u] induction hypothesis

[[π]]] D0 = [[k]]] ([[π′]]] D0)

v [[k]]] (D[u]) monotonicity

v D[v] D is a solution
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Proof: induction on the length of π:
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Question:

Does the constraint system give us only an upper bound ?

Answer:

In general yes.

Now let’s assume that all the functions [[k]]] are distributive . . .
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A function f : D1 → D2 is called

• distributive, when f(
⊔

X) =
⊔
{f(x) | x ∈ X} for all ∅ 6= X ⊆ D1.

• strict, when f(⊥) = ⊥.

• total distributive, when f is strict and distributive.

Example 1: D1 = D2 = (2U ,⊆) for some set U .

f(x) = x ∩ A ∪ B for some A,B ⊆ U .

Strictness: f(∅) = B =⇒ strict only if B = ∅.

Distributivity:

f(x ∪ y) = (x ∪ y) ∩ A ∪ B

= (x ∩ A) ∪ (y ∩ A) ∪ B

= (x ∩ A ∪ B) ∪ (y ∩ A ∪ B) :-)
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Example 2: D1 = D2 = N ∪ {∞}, f(x) = x+1.

Strictness: f(⊥) = 0+1 = 1 6= ⊥ :-(

Distributivity: f(
⊔

X) = 1+
⊔

X =
⊔
{x+1 | x ∈ X} =

⊔
{f(x) | x ∈ X} for

∅ 6= X :-)

Example 3: D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x, y) = x+y

Strictness: f(⊥) = 0+0 = 0 = ⊥ :-)

Distributivity: f((1, 4) t (4, 1)) = f(4, 4) = 8 6= 5 = f(1, 4) t f(4, 1) :-(
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Example 3: D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x, y) = x+y

Strictness: f(⊥) = 0+0 = 0 = ⊥ :-)

Distributivity: f((1, 4) t (4, 1)) = f(4, 4) = 8 6= 5 = f(1, 4) t f(4, 1) :-(
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Assumption: All nodes v are reachable from the node start.

(Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations [[k]]] are distributive then

D∗[v] = D[v] for all v.

Proof: We show that D∗ satisfies the constraint system.
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(1) For the start node:

D∗[start] =
⊔
{[[π]]] D0 | π : start → start}

w [[ε]]] D0

= D0

(2) For every edge k = (u, l, v)

D∗[v] =
⊔
{[[π]]] D0 | π : start → v}

w
⊔
{[[π′k]]] D0 | π′ : start → u}

=
⊔
{[[k]]] ([[π′]]] D0) | π′ : start → u}

= [[k]]] (
⊔
{[[π′]]] D0 | π′ : start → u})

= [[k]]] (D∗[u])

since {π′ | π′ : start → u} is non-empty.
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The result does not hold in case of unreachable nodes.

0 1 2
i = i+1

We consider D = N ∪ {∞} with ordering 0 v 1 v 2 v . . . v ∞.

Abstraction relation: n ∆ a iff n ≤ a.

The abstract transformation for the second edge is defined by [[k]]] a = a+1.

We choose D0 = 5.

We have the constraints D[0] w 5 and D[2] w D[1]+1.

We have

D∗[2] =
⊔

∅ = 0

D[2] = 0+1 = 1
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The Notion of Type Safety
Use typing rules to filter out unsafe programs.

Two kinds of semantics of programs:

• Static semantics: types

• Dynamic semantics: execution of the program

Type safety: ”Well types programs never go wrong”

– Robin Milner

Standard methodology: Safety = Progress + Preservation

Progress: a well types program that is not a value can be evaluated further

Preservation: well typed programs remain so during evaluation.
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A simple functional language (the simply typed lambda calculus)

t ::= terms:

x variable

| 0

| succ t | pred t

| iszero t zero test

| true | false

| if t then t else t

| fun x : T · t functions

| apply (t , t ) application
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The types

T ::=

Bool type of Booleans

Int type of ints

T → T type of functions

The results of computations

v ::= values:

true | false Boolean values

| nv numerical value

| fun x : T · t functional value

nv ::=

0

| succ nv
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The Dynamic Semantics: Evaluation

t −→ t′
(E-Succ)

succ t −→ succ t′

t −→ t′
(E-Pred)

pred t −→ pred t′

pred 0 −→ 0 (E-PredZero) pred (succ nv) −→ nv (E-PredSucc)

t −→ t′
(E-IsZero)

iszero t −→ iszero t′

iszero 0 −→ true (E-IsZeroZero) iszero (succ nv) −→ false (E-IsZeroSucc)

t −→ t′
(E-If)

if t then t1 else t2 −→ if t′ then t1 else t2
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if true then t1 else t2 −→ t1 (E-IfTrue)

if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)

Substitutions are defined as usual.

(if true then (pred x) else 0) [x 7→ succ 0] = (if true then (pred (succ 0)) else 0)

(fun x : Int · if true then x else succ (y))[y 7→ succ (x)]

= (fun z : Int · if true then z else succ (succ (x)))
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if true then t1 else t2 −→ t1 (E-IfTrue) if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)
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if true then t1 else t2 −→ t1 (E-IfTrue) if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)

Substitutions are defined as usual.

(if true then (pred x) else 0) [x 7→ succ 0] = (if true then (pred (succ 0)) else 0)

(fun x : Int · if true then x else succ (y))[y 7→ succ (x)]

= (fun z : Int · if true then z else succ (succ (x)))

120-b



if true then t1 else t2 −→ t1 (E-IfTrue) if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)

Substitutions are defined as usual.

(if true then (pred x) else 0) [x 7→ succ 0] = (if true then (pred (succ 0)) else 0)

(fun x : Int · if true then x else succ (y))[y 7→ succ (x)]

= (fun z : Int · if true then z else succ (succ (x)))

120-c



if true then t1 else t2 −→ t1 (E-IfTrue) if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)

Substitutions are defined as usual.

(if true then (pred x) else 0) [x 7→ succ 0] = (if true then (pred (succ 0)) else 0)

(fun x : Int · if true then x else succ (y))[y 7→ succ (x)]

= (fun z : Int · if true then z else succ (succ (x)))

120-d



if true then t1 else t2 −→ t1 (E-IfTrue) if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)

Substitutions are defined as usual.

(if true then (pred x) else 0) [x 7→ succ 0] = (if true then (pred (succ 0)) else 0)

(fun x : Int · if true then x else succ (y))[y 7→ succ (x)]

= (fun z : Int · if true then z else succ (succ (x)))

120-e



if true then t1 else t2 −→ t1 (E-IfTrue) if false then t1 else t2 −→ t2 (E-IfFalse)

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )

apply (fun x : T · t , v) −→ t [x 7→ v] (E-App)

Substitutions are defined as usual.

(if true then (pred x) else 0) [x 7→ succ 0] = (if true then (pred (succ 0)) else 0)

(fun x : Int · if true then x else succ (y))[y 7→ succ (x)]

= (fun z : Int · if true then z else succ (succ (x)))

120-f



Example

apply (fun x : Int · if x then (pred (succ 0)) else (succ 0), iszero 0)

−→ apply (fun x : Int · if x then (pred (succ 0)) else (succ 0), true )

−→ if true then (pred (succ 0)) else (succ 0)

−→ (pred (succ 0))

−→ 0

The justification for the first evaluation step is as follows

(E-IsZeroZero)
iszero 0 −→ true

(E-App2)
apply (fun x : Int · if . . . , iszero 0) −→ apply (fun x : Int · if . . . , true )
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A program which gets stuck during evaluation

apply (fun x : Int · if x then (pred (succ 0)) else (succ 0), 0)

−→ if 0 then (pred (succ 0)) else (succ 0),

There are no rules for evaluating this program further.

This program is not yet a value.

The type system of a type-safe language should reject such programs.
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The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T

Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-a



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-b



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-c



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-d



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-e



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-f



The Static Semantics: Typing

A type environment Γ is of the form x1 : T1, . . . , xn : Tn

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ ` 0 : Int (T-Zero)

Γ ` t : Int
(T-Succ)

Γ ` succ t : Int

Γ ` t : Int
(T-Pred)

Γ ` pred t : Int

Γ ` true : Bool (T-True) Γ ` false : Bool (T-False)

Γ ` t : Int
(T-IsZero)

Γ ` iszero t : Bool

Γ ` t : Bool Γ ` t1 : T Γ ` t2 : T
(T-If)

Γ ` if t then t1 else t2 : T

123-g



Γ, x : T ` t : T ′

(T-Fun)
Γ ` fun x : T · t : T → T ′

Γ ` t1 : T → T ′ Γ ` t2 : T
(T-App)

Γ ` apply (t1 , t2 ) : T ′
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Example

(T-Var)
x : Bool ` x : Bool

x : Bool ` 0 : Int
(T-Pred)

x : Bool ` (pred 0) : Int

x : Bool ` 0 : Int
(T-Succ)

x : Bool ` succ 0 : Int
(T-If)

x : Bool ` if x then (pred 0) else (succ 0) : Int
(T-Fun)

` fun x : Bool · if x then (pred 0) else (succ 0) : Bool → Int

·
·
·

` fun x : Bool · if x then (pred 0) else (succ 0) : Bool → Int

(T-Zero)
` 0 : Int

(T-IsZero)
` iszero 0 : Bool

(T-App)
` apply (fun x : Bool · if x then (pred 0) else (succ 0), iszero 0) : Int

125



Example

(T-Var)
x : Bool ` x : Bool

x : Bool ` 0 : Int
(T-Pred)

x : Bool ` (pred 0) : Int

x : Bool ` 0 : Int
(T-Succ)

x : Bool ` succ 0 : Int
(T-If)

x : Bool ` if x then (pred 0) else (succ 0) : Int
(T-Fun)

` fun x : Bool · if x then (pred 0) else (succ 0) : Bool → Int

·
·
·

` fun x : Bool · if x then (pred 0) else (succ 0) : Bool → Int

(T-Zero)
` 0 : Int

(T-IsZero)
` iszero 0 : Bool

(T-App)
` apply (fun x : Bool · if x then (pred 0) else (succ 0), iszero 0) : Int
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The following program

if true then (succ 0) else (iszero 0)

evaluates to (succ 0) (doesn’t get stuck).

However it is not well-typed according to our type system, i.e. we cannot show

` if true then (succ 0) else (iszero 0) : T

for any type T .

=⇒ we reject some safe programs.

The only required property for type safety is that all unsafe programs should

be rejected.
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The standard method for showing type safety.

(1) Progress

If ` t : T and t is not a value then t −→ t′ for some term t′ .

Well typed programs so not get stuck in some undefined state.

(2) Preservation

If ` t : T and t −→ t′ then ` t′ : T .

Evaluation preserves well-typedness (and type) of a program.

The proofs are usually easy (but long) once the right definitions have been

found out.

Examples of type-safe languages: Java, SML.

Examples of type-unsafe languages: C, C++.

127



Progress: If ` t : T and t is not a value then t −→ t′ for some term t′

Proof: We do induction on the size of typing derivations.

– If t is true , false , 0 or fun x : T · t′ then there is nothing to prove because

these are values.

– t cannot be a variable because the only rule for typing a variable is

x : T ∈ Γ
(T-Var)

Γ ` x : T

which requires Γ to be non-empty.
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some intersting cases:

– If t is of the form succ t′ , the typing derivation must be

` t′ : Int
(T-Succ)

` succ t′ : Int

If t′ is a value then t is also a value. Othwerwise by induction hypothesis we

have

t′ −→ t′′
(E-Succ)

succ t′ −→ succ t′′
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– If t is of the form pred t ′ then the typing derivation must be

` t′ : Int
(T-Pred)

` pred t′ : Int

(1) If t′ is value 0 then by (E-PredZero) we know that pred t′ −→ 0.

(2) If t′ is value succ nv then by (E-PredSucc) we know that pred t′ −→ nv.

(3) Otherwise t′ is not a value. Hence by induction hypothesis we have

t′ −→ t′′
(E-Pred)

pred t′ −→ pred t′′
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– If t is of the form iszero t′ then the typing derivation must be

` t : Int
(T-IsZero)

` iszero t : Bool

(1) If t′ is value 0 then by (E-IsZeroZero) we know that iszero t′ −→ true .

(2) If t′ is value succ nv then by (E-IsZeroSucc) we know that

iszero t′ −→ false

(3) Otherwise t′ is not a value and by induction hypothesis we have

t′ −→ t′′
(E-IsZero)

iszero t′ −→ iszero t′′
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– If t is of the form if t1 then t2 else t3 then the typing derivation must be

` t1 : Bool ` t2 : T ` t3 : T
(T-If)

` if t1 then t2 else t3 : T

(1) If t1 is value true then by (E-IfTrue) we know that t −→ t2 .

(2) If t1 is value false then by (E-IfFalse) we know that t −→ t3 .

(3) Otherwise t1 is not a value and by induction hypothesis we have

t1 −→ t′1
(E-If)

if t1 then t2 else t3 −→ if t′1 then t2 else t3
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– If t is of the form apply (t1 , t2 ) then the typing derivation must be

` t1 : T → T ′ ` t2 : T
(T-App)

` apply (t1 , t2 ) : T ′

(1) If t1 is not a value then by induction hypothesis we have

t1 −→ t′1
(E-App1)

apply (t1 , t2 ) −→ apply (t′1 , t2 )

(2) If t1 is value v1 and t2 is not a value then by induction hypothesis we have

t2 −→ t′2
(E-App2)

apply (v1, t2 ) −→ apply (v1, t
′

2 )
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(3) Suppose t1 is a value and t2 is also a value v2 . Since ` t1 : T → T ′ the

value t1 must be fun x : T · t′1 . Hence by (E-App) we have

apply (fun x : T · t′1 , v2) −→ t′1 [x 7→ v2]

:-)
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Preservation: If ` t : T and t −→ t′ then ` t′ : T

Proof: induction on typing derivations.

Some interesting cases:

– t is of the form if t1 then t2 else t3 . The typing derivation is of the form

` t1 : Bool ` t2 : T ` t3 : T
(T-If)

` if t1 then t2 else t3 : T

(1) Suppose t1 −→ t′1 so that t −→ t′ wheret′ is if t′1 then t2 else t3 .

By induction hypothesis we know that Γ ` t′1 : Bool so that Γ ` t′ : T .

(2) Suppose t1 is true so that t −→ t2 then we know that Γ ` t2 : T .
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– t is apply (fun x : T ′ · t1 , v2) and the typing derivation is

x : T ′ ` t1 : T
(T-Fun)

` fun x : T ′ · t1 : T ′ → T ` v2 : T ′

(T-App)
` apply (fun x : T ′ · t1 , v2) : T

We have t −→ t′ where t′ is t1 [x 7→ v2].

To show that ` t′ : T we prove

Preservation of types under substitution

If Γ, x : T ′ ` t1 : T and Γ ` t2 : T ′ then Γ ` t1 [x 7→ t2 ] : T .
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Suppose now we extend the language by adding vectors.

t ::= x | 0

| . . .

| [t , . . . , t ] a vector of terms

| get t t accessing some ith element of a vector

Values v ::= nv | true | false | [v, . . . , v].

Types T ::= Int | Bool | T → T | (vector T )

New evaluation rules

ti −→ t′i
(E-Vec)

[v0, . . . , vi−1, ti , ti+1 , . . . , tn ] −→ [v0, . . . , vi−1, t
′
i , ti+1 , . . . , tn ]
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t1 −→ t′1
(E-Get1)

get t1 t2 −→ get t′1 t2

t2 −→ t′2
(E-Get2)

get v1 t2 −→ get v1 t′2

i ≤ n
(E-Get)

get succ i(0) [v0, . . . , vn] −→ vi

New typing tules

Γ ` t0 : T . . . Γ ` tn : T
(T-Vec)

Γ ` [t0 , . . . , tn ] : vector T

Γ ` t1 : Int Γ ` t2 : vector T
(T-Get)

Γ ` get t1 t2 : T
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Is the extended language type safe?

No.

Preservation still holds, but progress fails.

Let term t be get (succ (succ (succ 0)))[0, 0]. It is well-typed.

···
` (succ (succ (succ 0))) : Int

(T-Zero)
` 0 : Int

(T-Zero)
` 0 : Int

(T-Vec)
` [0, 0] : vector Int

(T-Get)
` get (succ (succ (succ 0)))[0, 0] : Int

But there is no term t′ such that t −→ t′ .
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Remedy 1: Modify the typing rules to reject such programs.

Problem: type inference involves problems like precise array bounds checking

at compile time.

Remedy 2: Modify the evaluation rules to take some necessary action in case of

such ill-defined states.

We introduce a new term for ill-defined states.

t ::= . . . | error

and a rule for producing error message
i > n

get succ i(0) [v0, . . . , vn] −→ error
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and rules for propagating error messages

apply (error, t ) −→ error apply (v, error) −→ error . . .

Then we can show

Progress:

If ` t : T , t is not a value and t 6= error then t −→ t′ for some t′ .

Preservation:

If ` t : T and t −→ t′ then either t′ is error or ` t′ : T .
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Java Security
The virtual machine principle:

CodeCompiler

Compiler

Interpreter

Concrete Machine

Abstract Machine

Code

Hardware

OutputInput

Input

Source Code

Abstract Machine
Code
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Java programs: definitions of classes.

public class hello {

public static void main (String args[]) {

System.out.println (”Hello!”); } }

Compilation produces class files containing Java bytecode.

javac hello.java

produces file hello.class containing bytecodes for the class hello.

A software implementing the Java Virtual Machine (JVM) executes the

bytecodes to produce output.

java hello

=⇒ Portability
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The sandbox principle: each application has access to a restricted set of system

resources like local files, network, etc.

The original sandbox model

In JDK 1.0:

JVM

local code remote code

system resources

sandbox

In JDK 1.1:

JVM

local code remote code

system resources

sandbox

trusted
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The current sandbox model in Java 2

JVM

system resources

sandbox 3

sandbox 1 sandbox 2

class loadersecurity policy

local or remote code, signed or unsigned
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Elements of the Java sandbox

Package
Core Java API

Class Loader

Bytecode Verifier

Access Controller

Operating System

Core API Class Files

Remote Class Files

Key Database

Local Class Files

Signed Class Files

Security

Security Manager
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Java language security constructs

Each entity has an access level

Specifier Class Package Subclass World

private Yes No No No

(Default) Yes Yes No No

protected Yes Yes Yes No

public Yes Yes Yes Yes

Not sufficient for memory integrity . . .

147



Java language security constructs

Each entity has an access level

Specifier Class Package Subclass World

private Yes No No No

(Default) Yes Yes No No

protected Yes Yes Yes No

public Yes Yes Yes Yes

Not sufficient for memory integrity . . .

147-a



• No pointers: prevents access to arbitrary memory locations.

• No use of variables before initialization.

• Array bounds checks.

• No arbitrary casts between different classes.

public class A {private int x;}

public class B {public int x;}

...

// a is of class A

B b = (B) a;

// The above is rejected by the compiler

Object o = b; B b’ = o;

// The above is allowed by compiler but raises exception at runtime
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Enforcement of the Java language rules.

• At compile time:

check typing rules, enforcement of access qualifiers, prevention of most illegal

type casts.

• At load time:

verify bytecodes when a class is loaded (prevent malicious bytecodes)

• At runtime:

raise exceptions for illegal type casts, out of bound array accesses, . . .
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Java Class Loading and Bytecode
Verification

• Every object is a member of some class.

• The Class class: its members are the (definitions of) various classes that the

JVM knows about.

• The classes can be dynamically loaded by the JVM by reading local or

remote class files.

• Loading of classes is done by class loaders which are objects of the

ClassLoader class.

• The class loader coordinates with the security manager and the access

controller to provide the sandbox functions.
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public class getClassTest {

public static void main (String args[]) {

String s = ”abc”;

Class c1 = s.getClass();

System.out.println (”string \”” + s + ”\” is of class ” + c1.getName());

Class c2 = c1.getClass();

System.out.println (”class ” + c1.getName() + ” is of class ” + c2.getName());

Class c3 = c2.getClass();

System.out.println (”class ” + c2.getName() + ” is of class ” + c3.getName());

}

}

string ”abc” is of class java.lang.String

class java.lang.String is of class java.lang.Class

class java.lang.Class is of class java.lang.Class
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An example involving dynamic class loading

import java.lang.reflect.∗;

public class runhello {

public static void main (String args[]) {

Class c = null;

Method m = null;

// First we load the required class into the JVM

try { c = Class.forName (”hello”);

} catch (ClassNotFoundException e) {

System.out.println (”The class was not found”);

};
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// Get the main method of the class

Class argtypes[] = new Class[] { String[].class };

try { m = c.getMethod (”main”, argtypes);

} catch (NoSuchMethodException e) {

System.out.println (”The main method was not found”);

};

// Invoke the method

Object arglist[] = new Object[1];

try { m.invoke (null, arglist);

} catch (Exception e) {

System.out.println (”Error upon invocation” + e);

};

} }

Hello!
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The forName function finds, loads and links the class specified by the name.

forName(String name, boolean initialize, ClassLoader loader)

tries to find the class specified by the name, load it using the specified class

loader and link it. The class is initialized if asked for.

forName (”hello”)

above is equivalent to

forName (”hello”, true, this.getClass().getClassLoader())
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Security and the class loader

The security manager and access controller allow or prevent various operations

depending upon the context of the request.

This information is provided by the class loader.

The class loader has information about

• origin: where the class was loaded from

• whether the class comes from the local filesystem or from the network

• whether the class comes with a digital signature
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Each class loader defines a name space.

All classes loaded by particular class loader belong to its name space.

class loader cl1 class loader cl2

java.lang.String java.lang.String . . .

abc xyz

. . .

Classes from different sites are always loaded by different class loaders.

Hence the class java.lang.String provided by www.site1.com is different from

the class java.lang.String provided by www.site2.com.

In particular they belong to different packages.
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Hierarchy of class loaders

• The bootstrap class loader (primordial class loader, internal class loader) is

responsible for loading a few initial classes when the JVM is launched.

• All new user defined class loaders have a parent class loader.

bootstrap class loader

class loader 2class loader 1

class loader 3 class loader 4
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The class loading mechanism

1. return already existing class object, if found

2. ask the security manager for permission to access this class

3. attempt to load the class using the parent class loader

4. ask the security manager for permission to create this class

5. read the class file into an array of bytes

6. perform bytecode verification

7. create the class object

8. resolve the class

The mechanism can be overridden by class loaders in current versions of Java.
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Using a class loader

Class loaders are members of (subclasses of) the abstract ClassLoader class.

Classes are loaded using the loadClass function of class loaders:

protected Class loadClass (String name, boolean resolve)

where name is the name of the class, and resolve tells us whether the class

should be resolved or not.

Typically new classes of class loaders are defined by extending standard ones

like SecureClassLoader or URLClassLoader.
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Defining a new class of class loader

Either extend ClassLoader or one of its subclasses.

import java.net.∗;

// a trivial extension of URLClassLoader

public class myClassLoader extends URLClassLoader {

myClassLoader (URL url) { super (new URL[] {url}); }

protected Class loadClass (String name, boolean resolve) {

Class c = null;

try { c = super.loadClass(name, resolve);

} catch (ClassNotFoundException e) { System.out.println (”Class not found”); }

return c;

}

}
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Using a class loader

import java.lang.reflect.∗;

import java.net.∗;

public class runClass {

public static void main (String args[]) {

// Create a class loader

URL url = null;

try { url = new URL (”file:/home/userxyz/classes”);

} catch (MalformedURLException e) { }

myClassLoader cl = new myClassLoader(url);
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Class c = null; Method m = null;

c = cl.loadClass (args[0]); // Load the class

//Compute the argument vector and invoke the main method

Class argtypes[] = new Class[] { String[].class };

try { m = c.getMethod (”main”, argtypes); } catch (NoSuchMethodException e) {

System.out.println (”The main method was not found”); };

Object arglist[] = new Object[1];

arglist[0] = new String[args.length − 1];

for (int i=0; i < args.length − 1; i++) ((String[])arglist[0])[i] = args[i+1];

try { m.invoke (null, arglist); } catch (Exception e) {

System.out.println (”Error upon invocation” + e); };

}

}
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Java Bytecode Verification

Static analysis of the bytecodes to ensure security properties like

• operations follow typing rules

• no illegal casts

• no conversion from integers to pointers

• no calling of directly private methods of another class

• no jumping into the middle of a method

• no confusion between data and code
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The JVM

• Stack based abstract machine: operations pop arguments and push results

• A set of registers, typically used for local variables and parameters:

accessed by load and store instructions

• Stack and registers are preserved across method calls

• For each method, the number of stack slots and registers is specified in the

bytecode

• unconditional, conditional and multiway (switch) intra-procedural branches

• Exception handlers table of entries (pc1, pc2, C, h): if exception of class C is

raised between locations pc1 and pc2, then handler is at location h.

• Most JVM instructions are typed.
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Example bytecode

The source code:

public class test {

public static int factorial (int n) {

int res;

for (res = 1; n > 0; n−−) res = res ∗ n;

return res;

}

}

and the JVM bytecode (shown by running javap on the class file). . .
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...

public static int factorial ( int ); 2 stack slots , 2 registers

0: iconst 1 // push integer constant 1

1: istore 1 // store it in register 1 (res)

2: iload 0 // push register 0 (n)

3: ifle 16 // if negative or zero, goto 16

6: iload 1 // push register 1 (res)

7: iload 0 // push register 0 (n)

8: imul // multiply

9: istore 1 // store in register 1 (res)

10: iinc 0, −1 // increment register 0 (n) by -1

13: goto 2 // goto beginning of loop

16: iload 1 // load register 1 (res)

17: ireturn // return this value

...
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Some properties to be verified

• Type correctness: the arguments of an instruction are always of the right

type.

• No stack overflow or underflow

• Code containment: the PC points within the code for the method, at the

beginning of an instruction

• Register initialization before use

• Object initialization before use

Minimize runtime checks =⇒ efficient execution
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Verification idea: type level abstract interpretation

Use types as the abstract values.

The partial ordering v on types is the subtype relation.

Hence for example C v D v Object if class C extends class D.

We introduce special types Null and > to abstract null pointers and

uninitialized values. Also T v > for every T .

An abstract stack S is a sequence of types.

The sequence S = Int · Int · Bool abstracts a stack having a Boolean at the

bottom of the stack and just two integers above it.
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An abstract register assignment R maps registers to types.

R : {0, . . . ,Mreg − 1} → T

where Mreg is the maximum number of registers and T is the set of types.

An abstract state is either ⊥ (unreachable state) or (S,R) where S is an

abstract stack and R is an abstract register assignment.
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Executing instructions modifies the abstract state.

(S,R)
iconst n

// (Int · S,R)

if |S| < Mstack where Mstack is the maximum size of the stack

(Int · Int · S,R)
iadd

// (Int · S,R)

(S,R)
iload n

// (Int · S,R)

if 0 ≤ n < Mreg and R(n) = Int and |S| < Mstack

(Int · S,R)
istore n

// (S,R{n 7→ Int})

if 0 ≤ n < Mreg
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(Int · S,R)
ifle n

// (S,R)

if n is a valid instruction location

(S,R)
goto n

// (S,R)

if n is a valid instruction location
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(S,R)
aconst null

// (Null · S,R)

if |S| < Mstack

(S,R)
aload n

// (R(n) · S,R)

if 0 ≤ n < Mreg and R(n) v Object and |S| < Mstack

(τ · S,R)
astore n

// (S,R{n 7→ τ})

if 0 ≤ n < Mreg and τ v Object
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(S,R)
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Accessing fields and methods

(τ ′ · S,R)
getfield C.f.τ

// (τ · S,R)

if τ ′ v C

(τ1 · τ2 · S,R)
putfield C.f.τ

// (S,R)

if τ1 v τ and τ2 v C

(τ ′
n · . . . · τ ′

1 · S,R)
invokestatic C.m.σ

// (τ · S,R)

if σ = τ (τ1, . . . , τn), τ ′
i v τi for 1 ≤ i ≤ n and |τ · S| ≤ Mstack

(τ ′
n · . . . · τ ′

1 · τ
′ · S,R)

invokevirtual C.m.σ
// (τ · S,R)

if σ = τ (τ1, . . . , τn), τ ′ v C, τ ′
i v τi for 1 ≤ i ≤ n and |τ · S| ≤ Mstack
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Another example

public class testclass {

public testclass () { }

public Class testfunction (String s) {

Class c = s.getClass();

return c;

}

}

public java.lang.Class testfunction(java.lang.String); 1 stack slots, 3 registers

0: aload 1

1: invokevirtual #2; //Method java/lang/Object.getClass:()Ljava/lang/Class;

4: astore 2

5: aload 2

6: areturn
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Our analysis on this example

public java.lang.Class testfunction (java.lang.String ); 1 stack slots , 3 registers

// stack, R(0), R(1), R(2)

// ε, (testclass, String, >)

0: aload 1 // String, (testclass, String, >)

1: invokevirtual #2; // Class, (testclass, String, >)

4: astore 2 // ε, (testclass, String, Class)

5: aload 2 // Class, (testclass, String, Class)

6: areturn
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In case of several paths to a node, we need to compute least upper bounds t.

Comparison of abstract stacks:

T1 · . . . · Tn v U1 · . . . · Un iff Ti v Ui for 1 ≤ i ≤ n.

T1 · . . . · Tn t U1 · . . . · Un = T1 t U1 · . . . · Tn t Un

Comparison of abstract register assignments:

R1 v R2 iff R1(i) v R2(i) for 0 ≤ i < Mreg.

(R1 t R2)(n) = R1(n) t R2(n)

Comparison of abstract states

(S1, R1) v (S2, R2) iff S1 v S2 and R1 v R2

(S1, R1) t (S2, R2) = (S1 t S2, R1 t R2)

Also ⊥ v (R,S) and ⊥ v (R,S) = (R,S).
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Initial abstract state: (Sstart, Rstart) where Sstart = ε is the empty stack

and Rstart(0), . . . , Rstart(n−1) are the n arguments, and Rstart(i) = > for i ≥ n

If π : pc1 → pc2 is a path (possibly with loops) from pc1 to pc2 with

corresponding instruction sequence I1, . . . , Ik and

(Ri−1, Si−1)
Ii

// (Si, Ri)

for 1 ≤ i ≤ n then we write π : (S0, R0) → (Sk, Rk).

For every valid location pc we define

Merge Over All Paths (MOP):

S[pc] =
⊔
{(S,R) | π : (Sstart, Rstart) → (S,R)}
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Example

Suppose classes D and E are defined by extending class C, so that D t E = C.

// Int, (D, E)

10: ifle 17 // ε, (D, E)

13: aload 0 // D, (D, E)

14: goto 18 // ε, (D, E)

17: aload 1 // C, (D, E)

18: areturn

(According to our notation, C, (D,E) is the abstract state before the execution

of the instruction at location 18.)
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Another example

// ε, (Int,String)

9: iload 0 // Int, (Int, String)

10: ifle 17 // ε, (Int,String)

13: iload 0 // Int, (Int, String)

14: goto 18 // ε, (Int,String)

17: aload 1 // >, (Int, String)

18: areturn

The bytecode verification fails because the return value is of unknown type.
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public static int factorial ( int ); 2 stack slots , 2 registers

// ε, (Int,>)

0: iconst 1 // Int, (Int,>)

1: istore 1 // ε, (Int, Int)

2: iload 0 // Int, (Int, Int)

3: ifle 16 // ε, (Int, Int)

6: iload 1 // Int, (Int, Int)

7: iload 0 // Int · Int, (Int, Int)

8: imul // Int, (Int, Int)

9: istore 1 // ε, (Int, Int)

10: iinc 0, −1 // ε, (Int, Int)

13: goto 2 // ε, (Int, Int)

16: iload 1 // Int, (Int, Int)

17: ireturn
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Other issues to be tackled in the full Java bytecode language:

• initialization of objects

• exception handling
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Typed Assembly Language (TAL)
Morrisett et al.

• A generic approach to safe compiled code.

• Based on the concept of type safety.

• Use type preserving compilation to transform type safe source code to type

safe compiled code.

• Can be combined with the idea of proof carrying code.
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A first language: TAL-0

Deals with control flow safety: no jumps to arbitrary machine addresses.

Syntax of programs: We assume a fixed finite set of registers:

r ::= registers

r1 | . . . | rk

ν ::= operands

n integer

| l label

| r register

ι ::= instructions

rd := ν

| rd := rs + ν

| if r jump ν

I ::= instruction sequences

jump ν

| ι; I

Operands other than registers are called values (i.e. registers and labels).
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• Instruction sequences have an unconditional jump at the end, and other

instructions before.

• As yet, no infinite memory (except for code).

An example for computing product: r4 contains the return address

prod : r3 := 0;

jump loop

loop : if r1 jump done;

r3 := r2 + r3;

r1 := r1 + −1;

jump loop

done : jump r4

The example has three instruction

sequences, and a label correspond-

ing to each of them.
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Evaluation: the TAL-0 abstract machine

• the abstract machine contains the code and data.

• an evaluation step changes the state (code and data) of the abstract machine.

R ::= register files

{r1 7→ ν1, . . . , rk 7→ νk} (each νi is a value)

h ::= heap values

I instruction sequences

H ::= heaps

{l1 7→ h1, . . . lm 7→ hm}

M ::= abstract machine states

(H,R, I) (I is the current instruction sequence being executed)
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• A register file R maps each register r to some value (integer or label) R(r).

• A heap H is a partial map: H maps some labels l to heap values H(l).

The previous example has three instruction sequences

I1 = r3 := 0; jump loop

I2 = if r1 jump done; r3 := r2 + r3; r1 := r1 + −1; jump loop

I3 = jump r4

We have the heap H0 = {prod 7→ I1, loop 7→ I2, done 7→ I3}.

The starting state of the machine is supposed to be of the form

M0 = (H0, R0, I1)

where R0(r1) = n and R0(r2) = m are integers and R0(r4) is a label.

A possible execution sequence: . . .
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H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0, r4 7→ l}, r3 := 0; jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, I2

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, r3 := r2 + r3; r1 := r1 + −1; jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 2 r4 7→ l}, r1 := r1 + −1; jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, I2

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, r3 := r2 + r3; r1 := r1 + −1; jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 4 r4 7→ l}, r1 := r1 + −1; jump loop

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, jump loop

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, I2

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, jump r4
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As usual, we formalize this using evaluation rules.

H(R̂(ν)) = I
E-Jump)

(H,R, jump ν) −→ (H,R, I)

where the lookup function R̂ returns the value corresponding to an operand:

R̂(r)=R(r)

R̂(n)=n

R̂(l)=l

The JUMP instruction loads a new instruction sequence which should then be

executed.

(The machine is stuck if R̂(ν) is not a label.)
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Otherwise, we consume one instruction from the current instruction sequence.

The MOV and ADD instructions modify the register file.

(H,R, rd := ν; I) −→ (H,R ⊕ {rd 7→ R̂(ν)}, I) (E-Mov)

R(rs) = n1 R̂(ν) = n2
(E-Add)

(H,R, rd := rs + ν; I) −→ (H,R ⊕ {rd 7→ n1 + n2}, I)

(The machine is stuck in the second case if R(rs) or R̂(ν) is not an integer.)
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The conditional jump instruction either loads a new instruction sequence or

just consumes one instruction.

R(r) = 0 H(R̂(ν)) = I ′
(E-IfEq)

(H,R, if r jump ν; I) −→ (H,R, I ′)

R(r) = n n 6= 0
(E-IfNeq)

(H,R, if r jump ν; I) −→ (H,R, I)

(The machine is stuck if R(r) is not an integer or, in the first case, if R̂(ν) is

not a label.)
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Consider the following simple code:

l : r1 := 5;

jump r1

Define instruction sequence I = r1 := 5; jump r1 and heap H = {l 7→ I}.

Corresponding to the above code, starting with register file R = {r1 7→ 0} we

have the evaluation step

(H, {r1 7→ 0}, I) −→ (H, {r1 7→ 5}, jump r1)

The machine is now stuck: no further evaluation step is possible because r1

stores an integer instead of a label.

Hence to filter out such bad programs, we need to introduce typing rules.
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stores an integer instead of a label.

Hence to filter out such bad programs, we need to introduce typing rules.
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Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.

In the previous example, we will start with the register file type Γ = {r1 : Int}.

After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump r1 fails to type check because Γ(r1) is Int

instead of Code.

Hence the code is rejected, as desired.

Is this idea enough?

192



Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.

In the previous example, we will start with the register file type Γ = {r1 : Int}.

After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump r1 fails to type check because Γ(r1) is Int

instead of Code.

Hence the code is rejected, as desired.

Is this idea enough?

192-a



Consider the following code:

l : r1 := 5;

r2 := l′;

jump r2

Label l′ points to some other instruction sequence I ′.

I = r1 := 5; jump r1 and heap H = {l : I, l′ 7→ I ′}.

Should the above code be well-typed? After the first two instructions, the

register file type will be {r1 : Int, r2 : Code}, as it should be.

Answer: depends on I ′. . .
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Consider the code

l′ : jump r1;

Clearly the instruction sequence I ′ = jump r1 expects a label in r1 instead of

an integer.

Hence the code at l is not well-typed.

Solution:

With each instruction sequence, associate a register file type that is expected

at the beginning of that instruction sequence.

Secondly, enrich the notion of types. Instead of having a simple type Code for

labels, we have types of the form Code(Γ) where Γ is a register file type.
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We further choose a type Top which is the super type of all types.

In the previous example, the instruction sequence I ′ will have type

{r1 : Code{r1 : Top, r2 : Top}}

The instruction sequence I ′ expects r1 to contain label to some instruction

sequence (I) which expects both registers to contain ”anything”.

The instruction sequence I has type {r1 : Top, r2 : Top}.

After executing the first two instructions of I, the register file type becomes

{r1 : Int, r2 : Code{. . .}.

Hence the jump instruction doesn’t type check.
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The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

Γ ::= register file types

{r1 : τ1, . . . , rk : τk}

Ψ ::= heap types

{l1 : τ1, . . . , lm : τm}

Typing of operands

The type judgment

Ψ,Γ ` ν : τ

means: under heap type Ψ and register file type Γ, the operand ν has type τ .

Ψ,Γ ` n : Int (T-Int)
l : τ ∈ Ψ

Ψ,Γ ` l : τ
(T-Lab)
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Ψ,Γ ` r : Γ(r) (T-Reg)

Ψ,Γ ` ν : τ τ ′ v τ
(T-Sub)

Ψ,Γ ` ν : τ ′

where

τ v1 τ for every τ

τ v1 Top for every τ

Code(Γ1) v Code(Γ2) iff Γ1(r) v1 Γ2(r) for every register r

Top represents ”any” type, hence can be replaced by any type.
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Typing of instructions

The type judgment

Ψ ` ι : Γ1 → Γ2

means: under heap type Ψ, the instruction ι modifies the register file type from

Γ1 to Γ2.

Ψ,Γ ` ν : τ
(T-Mov)

Ψ ` rd := ν : Γ → Γ ⊕ {rd : τ}

Ψ,Γ ` rs : Int Ψ,Γ ` ν : Int
(T-Add)

Ψ ` rd := rs + ν : Γ → Γ ⊕ {rd : Int}

The mov and add instructions modify the type of the destination register.
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Ψ,Γ ` rs : Int Ψ,Γ ` ν : Code(Γ)
(T-If)

Ψ ` if rs jump ν : Γ → Γ

Both branches of the if instruction must have the same type.

If the if condition fails then the next instruction is executed with register file

of type Γ.

If the if condition succeeds then the jump should be to some instruction

sequence which expects register file type Γ.
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Typing of instruction sequences

The type judgment

Ψ : I : Code(Γ)

means: under heap type Ψ, the instruction sequence I expects the register file

to have type Γ at the beginning.

Ψ,Γ ` ν : Code(Γ)
(T-Jump)

Ψ ` jump ν : Code(Γ)

Ψ ` ι : Γ1 → Γ2 Ψ ` I : Code(Γ2)
(T-Seq)

Ψ ` ι; I : Code(Γ1)
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The type judgment
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Typing of instruction sequences

The type judgment
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Typing of register files, heaps, and machine states

Ψ, ` R(r1) : Γ(r1) . . . Ψ, ` R(rk) : Γ(rk)
(T-Regfile)

Ψ ` R : Γ

means that the register file type is irrelevant here

∀l ∈ dom(Ψ) · Ψ ` H(l) : Ψ(l)
(T-Heap)

` H : Ψ

dom(Ψ) is the set of labels in the domain of Ψ

` H : Ψ Ψ ` R : Γ Ψ ` I : Code(Γ)
(T-Mach)

` (H,R, I)

The last judgment means that (H,R, I) is a well-typed machine.
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Example

l : r1 := l; r2 := l′; jump r2
︸ ︷︷ ︸

I

l′ : jump r1
︸ ︷︷ ︸

I′

We have the heap H = {l 7→ I, l′ 7→ I ′}.

Define heap type Ψ =







l : Code{r1 : Top, r2 : Top},

l′ : Code{r1 : Ψ(l), r2 : Top}







Define register file types

Γ1 = {r1 : Top, r2 : Top}

Γ2 = {r1 : Ψ(l), r2 : Top}

Γ3 = {r1 : Ψ(l), r2 : Ψ(l′)}
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claim 1: Ψ ` I : Code(Γ1)

l : Code{r1 : Top, r2 : Top} ∈ Ψ
(T-Lab)

Ψ, Γ1 ` l : Ψ(l)
(T-Mov)

Ψ ` r1 := l : Γ1 → Γ2

·
·
·

Ψ ` r2 := l′ : Γ2 → Γ3

Ψ, Γ3 ` r2 : Ψ(l′) Code(Γ3) v Ψ(l′)
(T-Sub)

Ψ, Γ3 ` r2 : Code(Γ3)
(T-Jump)

Ψ ` jump r2 : Code(Γ3)

Code(Γ3) = Code{r1 : Ψ(l), r2 : Ψ(l′)}

v Ψ(l′) = Code{r1 : Ψ(l), r2 : Top}

because Ψ(l) v1 Ψ(l) and Ψ(l′) v1 Top.
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·
·
·

Ψ ` r1 := l : Γ1 → Γ2

·
·
·

Ψ : r2 := l′ : Γ2 → Γ3

·
·
·

Ψ ` jump r2 : Code(Γ3)
(T-Seq)

Ψ ` r2 := l′; jump r2 : Code(Γ2)
(T-Seq)

Ψ ` I : Code(Γ1)

This proves claim 1.

claim 2: Ψ ` I ′ : Code(Γ2)

Ψ, Γ2 ` r1 : Ψ(l) Code(Γ2) v Ψ(l)
(T-Sub)

Ψ, Γ2 ` r1 : Code(Γ2)
(T-Jump)

Ψ ` jump r1 : Code(Γ2)
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·
·
·
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·
·
·
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·
·
·
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Well typing of the heap

Recall that H = {l 7→ I, l′ 7→ I ′} and Ψ = {l : Code(Γ1), l
′ : Code(Γ2)}.

···
Ψ ` I : Code(Γ1)

···
Ψ ` I ′ : Code(Γ2)

(T-Heap)
` H : Ψ

Well typing of register file

Suppose we want to start running the machine with the register file

R = {r1 7→ 0, r2 7→ 0}

Define register file type Γ = {r1 : Int, r2 : Int}

(T-Int)
Ψ, ` 0 : Int

(T-Int)
Ψ, ` 0 : Int

(TRegfile)
Ψ ` R : Γ
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Suppose the initial instruction sequence we want to execute is I.

We have shown that Ψ ` I : Code(Γ1) (claim 1).

Similarly we show Ψ ` I : Code(Γ).

Finally, well typing of the machine

···
` H : Ψ

···
Ψ ` R : Γ

···
Ψ ` I : Code(Γ)

(T-Mach)
` (H,R, I)

206



Suppose the initial instruction sequence we want to execute is I.

We have shown that Ψ ` I : Code(Γ1) (claim 1).

Similarly we show Ψ ` I : Code(Γ).

Finally, well typing of the machine

···
` H : Ψ

···
Ψ ` R : Γ

···
Ψ ` I : Code(Γ)

(T-Mach)
` (H,R, I)

206-a



Another example

prod : r3 := 0;

jump loop

loop : if r1 jump done;

r3 := r2 + r3;

r1 := r1 + −1;

jump loop

done : jump r4

To complete the example we will have r4 contain the halt label.

halt : jump halt

Name the instructions ι1, . . . , ι8 and the instruction sequences I1, I2, I3, I4.

Let Γ′ = {r1 : Int, r2 : Int, r3 : Int, r4 : Top}

Let Γ = {r1 : Int, r2 : Int, r3 : Int, r4 : Code(Γ′)}

Let H = {prod 7→ I1, loop 7→ I2, done 7→ I3, halt 7→ I4}.

Let Ψ = {prod : Code(Γ), loop : Code(Γ), done : Code(Γ), halt : Code(Γ′)}.
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(T-Reg)
Ψ, Γ ` r3 : Int

(T-Int)
Ψ, Γ ` 0 : Int

(T-Mov)
Ψ ` ι1 : Γ → Γ

(T-Lab)
Ψ, Γ ` loop : Code(Γ)

(T-Jump)
Ψ ` jump loop : Code(Γ)

(T-Seq)
Ψ ` I1 : Code(Γ)

Similarly, Ψ ` I2 : Code(Γ).

(T-Reg)
Ψ, Γ ` r4 : Code{r1 : Int, r2 : Int, r3 : Int, r4 : Top}

(T-Sub)
Ψ, Γ ` r4 : Code(Γ)

(T-Jump)
Ψ ` I3 : Code(Γ)

(T-Lab)
Ψ, Γ′ ` halt : Code(Γ′)

(T-Jump)
Ψ ` I4 : Code(Γ′)
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Hence we have well typing of the machine:

·
·
·

I1 : Code(Γ)

·
·
·

I2 : Code(Γ)

·
·
·

I3 : Code(Γ)

·
·
·

I4 : Code(Γ′)
(T-Heap)

` H : Ψ

Define initial register file: R = {r1 7→ 0, r2 7→ 0, r3 7→ 0, r4 7→ halt}

(T-Int)
Ψ, ` 0 : Int . . .

(T-Int)
Ψ, ` 0 : Int

(T-Int)
Ψ, ` halt : Code(Γ′)

(T-Regfile)
Ψ ` R : Γ

` H : Ψ Ψ ` R : Γ Ψ ` I1 : Code(Γ)
(T-Mach)

` (H, R, I1)
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Following instruction sequences are rejected by our type system.

l1 : r1 := l2; r3 := r2 + 1; . . .

l3 : r1 := 5; jump r1

• We haven’t discussed how to check if a mchine is well typed. Alternative:

use proof carrying code.

• It is straightforward to translate TAL-0 programs to code for some real

processor.

If the TAL-0 program is well-typed then the translated code will behave

properly.

. . . for that we of course need to prove type safety for TAL-0 . . .
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Type safety for TAL-0

”well typed machines do not get stuck”

Progress: If ` M then there is some M ′ such that M → M ′.

Preservation: If ` M and M → M ′ then ` M ′.

Proof: by easy induction, case analysis. . .

Q: Why bother doing proofs about programming languages? They are

almost always boring if the definitions are right.

A: The definitions are almost always wrong.

— Anonymous
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An extension: TAL-1

We now also deal with memory safety.

Besides registers, we now have a potentially infinite memory, stack, pointers,

and facilities for allocating space for data.

Already expressive enough for implementing simple programs from high level

languages.

Memory safety: no reads to or writes from illegal memory locations.

212



Examples of new kinds of instructions

• r1 := Mem[r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in r1.

• Mem[r2 + 4] := r1

The reverse store operation.

• r1 := malloc 10

allocate 10 words on the heap, and store corresponding pointer in r1.

• salloc 10

allocate 10 words on the stack (and update stack pointer)
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Example code.

r1 := malloc 5; // allocate 5 words on heap

Mem[r1] := 10; // store data in the first word

Mem[r1 + 1] := 20; // store data in the first word

r2 := Mem[r1] // load 10 into r2

The following code has no well-defined behavior.

r1 := malloc 5; // allocate 5 words on heap

r2 := malloc 5; // allocate 5 words on heap

r3 := r1 + r2 // add the two pointers

Hence for type safety, we should at least have a different type for pointers.
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Further the type system should distinguish between pointers to different types

of data.

r1 := malloc 5;

Mem[r1] := 9;

r2 := Mem[r1] // r1 stores a pointer, hence this is ok

jump r2 // not ok, since r1 was a pointer to an integer

Hence the type-system should deal with types like ptr(Int), ptr(Code(Γ)),

ptr(ptr(Int)), . . .
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// currently r1 : ptr(Code(. . .))

r3 := 5;

Mem[r1] := r3; // now r1 : ptr(Int)

r4 := Mem[r1]; // r4 : Int

jump r4 // of course ill-typed

Hence type of a register should be updated after a store through it.
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Aliasing problem

Should the following be well typed?

// currently r1 : ptr(Code(. . .)), r2 : ptr(Code(. . .))

r3 := 5;

Mem[r1] := r3; // now r1 : ptr(Int)

r4 := Mem[r2]; // load through r2. r4 :???

jump r4 // is this well-typed???

Answer: depends on whether r1 and r2 point to the same location (aliasing).

Problem: how should the type system keep track of aliasing?
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Solution: have two kinds of memory locations.

Shared pointers: support aliasing. Different type of data cannot be written.

Unique pointers: no aliasing. Different kind of data can be written. Useful for

allocating and initializing shared data structures, and for stack frames.

The instruction

commit rd

declares a pointer to be shared, its type cannot change now.
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The TAL-1 syntax: we make the following extensions to the TAL-0 syntax.

r ::= registers

r1 | . . . | rk | sp ordinary registers and stack pointer

ι ::= instructions

. . . mov/add/if-jump

rd := Mem[rs + n] load from memory

Mem[rd + n] := rs store to memory

rd := malloc n allocate n heap words

commit rd make the pointer shared

salloc n allocate n stack words

sfree n free n stack words
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ν ::= operands

r registers

n integers

l code or shared data pointers

uptr(h) unique data pointers

h ::= heap values

I instruction sequences

〈ν1, . . . , νn〉 tuples

Instruction sequences I are in TAL-0: list of instructions followed by a jump

Values are operands other than registers. Heaps map labels l to heap values h.

Register files and abstract machine states are defined as for TAL-0.
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The TAL-1 abstract machine: Unique data values are not stored in the heap.

uptr

Stack

sp r1 r2 r3 r4 r5

uptr uptr

Heap

... code ...

15

10
5

...

10

l1
l2

l3

l4

l5

l6l1

l1
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TAL-1 evaluation rules

We fix a constant MaxStack: the maximum allowed size of the stack.

All TAl-0 evaluation rules remain the same except the (E-Mov) rule.

This rule now needs to ensure that unique pointers are not copied.

R̂(ν) 6= uptr(h)
(E-Mov1)

(H,R, rd := ν; I) → (H,R ⊕ {rd 7→ R̂(ν)}, I)

The R̂ function is as for TAL-0. Further we have R̂(uptr(h)) = uptr(h).

If R̂(ν) is uptr(h) then the machine gets stuck.

The other evaluation rules of TAL-0 are unmodified. We now add new rules for

the new instructions . . .
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Allocation generates a unique pointer

(H,R, rd := malloc n; I) → (H,R ⊕ {rd 7→ uptr〈m1, . . . ,mn〉}, I) (E-Malloc)

• A unique pointer to a tuple of n words is created and stored in the

destination register.

• The initial values in the words are arbitrary integers m1, . . . ,mn

(uninitialized values)

• Typically we would make the pointer shared once the words have been

initialized.

• malloc instruction takes a constant as argument. Useful for implementing

tuples, records, etc but not yet for variable sized arrays.
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Allocation

sp r1 r2 r3 r4 r5

Heap Heap

sp r1 r2 r3 r4 r5

uptr

...

r2 := malloc 4

5

2

17

100
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Examples The following code will lead to stuck states.

• copying of unique pointers:

. . . r1 := malloc 5; r2 := r1; . . .

• using unique pointers in place of integers

. . . r1 := malloc 5; if r1 jump l; . . .
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Declaring a pointer to be shared

rd 6= sp R(rd) = uptr(h) l /∈ dom(H)
(E-Commit)

(H,R, commit rd; I) → (H ⊕ {l 7→ h}, R ⊕ {rd 7→ l}, I)

• The stack is always a unique data value.

• commit moves the unique data in the heap (i.e. it is now considered

shared data)

• A fresh label is associated with the data and is stored in the destination

register.
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5

...

uptr

sp r1 r2 r3 r4 r5

Heap

sp r1 r2 r3 r4 r5

Heap

commit r2

5

...

l

l is a completely fresh label.
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Loading and storing

Loading shared data

R(rs) = l H(l) = 〈ν0, . . . , νn, . . . , 〉
(E-Ld-S)

(H,R, rd := Mem[rs + n]; I) → (H,R ⊕ {rd 7→ νn}, I)

Loading unique data

R(rs) = uptr〈ν0, . . . , νn, . . . , 〉
(E-Ld-U)

(H,R, rd := Mem[rs + n]; I) → (H,R ⊕ {rd 7→ νn}, I)
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Loading and storing
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Loading shared data

sp r1 r2 r3 r4 r5

Heap

5

...

l

10

...

sp r1 r2 r3 r4 r5

Heap

5

...

10

10r1 := Mem[r2 + 2]

l
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Loading unique data

5

...

10

5

...

uptr

sp r1 r2 r3 r4 r5

Heap

10

...

Heap

r1 := Mem[r2 + 2]

sp r1 r2 r3 r4 r5

10

uptr
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Storing shared data

R(rd) = l H(l) = 〈ν0, . . . , νn, . . . , 〉 R(rs) = ν ν 6= uptr(h)
(E-St-S)

(H,R,Mem[rd + n] := rs; I) → (H ⊕ {l 7→ 〈ν0, . . . , ν, . . . , 〉}, R, I)

Storing unique data

R(rd) = uptr〈ν0, . . . , νn, . . . , 〉 R(rs) = ν ν 6= uptr(h)
(E-St-U)

(H,R,Mem[rd + n] := rs; I) → (H,R ⊕ {rd 7→ uptr〈ν0, . . . , ν, . . . , 〉}, I)
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Storing shared data

R(rd) = l H(l) = 〈ν0, . . . , νn, . . . , 〉 R(rs) = ν ν 6= uptr(h)
(E-St-S)
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Storing unique data
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Storing shared data

sp r1 r2 r3 r4 r5

Heap

5

l

sp r1 r2 r3 r4 r5

Heap

5

10

l

Mem[r2 + 2] := r1

10

... ...

... ...107
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Storing unique data

5

uptr

sp r1 r2 r3 r4 r5

Heap Heap

sp r1 r2 r3 r4 r5

10

uptr

Mem[r2 + 2] := r1

10

7

...

5

10
...

...
...

233



Example Allocating space, initializing data, and making it shared.

l : r1 := malloc 3;

r3 := l;

r4 := 7;

Mem[r1] = r3;

Mem[r1 + 1] = r4;

commit r1;

r2 := r1; // now the pointer can be aliased

r4 := r4 + 6;

Mem[r2 + 1] := r4; // this is ok (should be well-typed)

Mem[r2 + 1] := r3; // this is not ok
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This is also ok.

l : r1 := malloc 3;

r3 := l;

r4 := 7;

Mem[r1] = r4; //r1 : uptr(Int, . . .)

Mem[r1] = r3; //r1 : uptr(Code(. . .), . . .)

. . .

commit r1;

Type of data can change before being declared to be shared.
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Allocation on the stack

R(sp) = uptr〈ν0, . . . , νp〉 p + n ≤ MaxStack
(E-Salloc)

(H,R, salloc n; I) → (H,R ⊕ {sp 7→ uptr〈m1, . . . ,mn, ν0, . . . , νp〉}, I)

• The stack is a unique data.

• Instead of allocating a new tuple, we extend the existing stack

• Arbitrary integers (uninitialized values) are added at the top of the stack.

• Stack overflow leads to stuck state.

• We have chosen the stack to grow upward: positive indexing as for other

data tuples.
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Deallocating space from the stack

R(sp) = uptr〈ν ′
1, . . . , ν

′
n, ν0, . . . , νp〉

(E-Sfree)
(H,R, sfree n; I) → (H,R ⊕ {sp 7→ uptr〈ν0, . . . , νp〉, I)

• Stack underflow leads to a stuck state: the stack should have at least n

elements before the sfree instruction.
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5

uptr

sp r1 r2 r3 r4 r5

10

7

...

sp r1 r2 r3 r4 r5

10

uptr

sp r1 r2 r3 r4 r5

10

uptr

salloc 2

... ...

5 5

17

38

...

... ...
7 7

Mem[sp + 1] := r1

10

38
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• No call/return instructions in the language.

• These are simulated using the jump instruction: e.g. saving/restoring

return addresses are done explicitly.

• Allows modifications in calling conventions (passing arguments and return

address on stack or in registers, tail recursion, . . . )

• For this we focus on a more primitive set of type constructors.

• In contrast, the JVM language has notions of procedures and procedure

calls hardwired into the language. Any modification (e.g. adding tail

recursion) requires modifications in the abstract machine and the type

system.
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Translations from high level languages to TAL-0

TAL-0 is expressive enough to implement simple subsets of high level

languages.

Example C Code

int fib (int x) {

if (x == 0) return 0; else

if (x == 1) return 1; else

return ( fib (n−1) + fib (n−2));

}
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We choose the following calling conventions for our example.

• Caller pushes arguments on the stack.

• Caller puts return address in r3.

• Callee pops arguments from the stack.

• Callee returns the result in r1.

• Register r2 is freely available for intermediate computations.
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fib : r2 := Mem[sp]; // r2 := x

if r2 jump ret0;

r2 := r2 + −1; // r2 := x − 1

if r2 jump ret1;

salloc 2;

Mem[sp + 1] := r3; // save old return address

Mem[sp] := r2; // push x − 1 on stack

r3 := cont1; // new return address

jump fib // r1 := fib(x − 1)
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ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

ret1 : r1 := 1;

sfree 1;

jump r3

cont1 : salloc 2;

Mem[sp + 1] := r1; // save fib(x − 1)

r2 := Mem[sp + 3]; // r2 := x

r2 := r2 + −2; // r2 := x − 2

Mem[sp] := r2; // push x − 2 on stack

r3 := cont2; // push return address

jump fib // r1 = fib(x − 2)
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ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

ret1 : r1 := 1;

sfree 1;

jump r3

cont1 : salloc 2;

Mem[sp + 1] := r1; // save fib(x − 1)

r2 := Mem[sp + 3]; // r2 := x

r2 := r2 + −2; // r2 := x − 2

Mem[sp] := r2; // push x − 2 on stack

r3 := cont2; // push return address

jump fib // r1 = fib(x − 2)
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cont2 : r2 := Mem[sp]; // r2 := fib(x − 1)

r1 := r1 + r2; // r1 := fib(x − 2) + fib(x − 1)

r3 := Mem[sp + 1]; // restore old return address

sfree 3;

jump r3
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Towards a TAL-1 type system

How to distinguish ”good” programs from ”bad” programs?

As discussed, we need types

ptr(σ) unique pointer type

uptr(σ) shared pointer type

where σ is an allocated type, i.e. type for allocated data.

The instruction r1 := malloc 3 makes the register r1 to be of type

uptr〈Int, Int, Int〉.

The instruction commit r2 transforms the type of register r2 from uptr(σ) to

ptr(σ).
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Consider the fib example again.

Initially sp should point to a stack having Int at the top.

However the rest of the stack could be arbitrarily large and have elements of

arbitrary type.

First idea: use a type similar to Top, to represent tuples of ”any” type.

Further this should type should also represent tuples of any length.

Suppose we choose a type Top′ for this.
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Then fib would expect sp to have type 〈Int,Top′〉, representing a stack with an

integer at the top and any number of other things below.

Hence we should expect:

fib : Code{sp : uptr〈Int,Top′〉, r1 : Top, r2 : Top, r3 : Code(Γ)}.

What should be Γ?

At the end of computation, we have r1 : Int, sp : uptr(Top′), and we jump to the

label l contained in r3.

Hence we should expect:

Γ = {sp : uptr(Top′), r1 : Int, r2 : Top, r3 : Top}.

But we are forgetting the relationship between the types of values on the stack

at the beginning and at the end!
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Solution: use type variables to state such equalities.

Hence with fib we will associate the type

∀s · Code{sp : uptr〈Int, s〉, r1 : Top, r2 : Top,

r3 : Code{sp : uptr(s), r1 : Int, r2 : Top, r3 : Top}}

where s is an allocated type variable i.e. representing an arbitrary length of

allocated memory.

This expresses the constraint that the code pointed to by r3 should expect the

same type of stack that is below the argument of fib.

The universal quantifier helps to distinguish occurrences of the variable s

elsewhere.
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The TAL-1 type system

τ ::= operand types

Int | Code(Γ)

| ptr(σ) shared pointer types

| uptr(σ) unique pointer types

| ∀ρ · τ quantification over allocated types

σ ::= allocated types

ε empty tuple type

τ one operand

〈σ1, σ2〉 pair

ρ allocated type variable
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operand types are for operands and allocated data types are for tuples.

As before register file types Γ are of the form {sp : τ , r1 : τ1, . . . , rk : τk} where

τ , τi are operand types.

Similarly heap types Ψ map labels to operand types.

We consider

〈〈σ1, σ2〉, σ3〉 = 〈σ1, 〈σ2, σ3〉〉 = 〈σ1, σ2, σ3〉

〈σ, ε〉 = 〈ε, σ〉 = σ

. . .
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Typing rules

Tuples
∀1 ≤ i ≤ n · Ψ,Γ ` νi : τi

(T-Tuple)
Ψ,Γ ` 〈ν1, . . . , νn〉 : 〈τ1, . . . , τn〉

Ψ,Γ ` h : σ
(T-Uptr)

Ψ,Γ ` uptr(h) : uptr(σ)
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Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,

where now copying of unique pointers should be prevented. Hence we have the

following new rule.
Ψ,Γ ` ν : τ τ 6= uptr(σ)

(T-Mov1)
Ψ ` rd := ν : Γ → Γ ⊕ {rd : τ}

We add new typing rules for the new instructions.
n ≥ 0

(T-Malloc)
Ψ ` rd := malloc n : Γ → Γ ⊕ {rd : uptr〈Int, . . . , Int

︸ ︷︷ ︸

n times

〉}

malloc creates a unique pointer type.
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Ψ,Γ ` rd : uptr(σ) rd 6= sp
(T-Commit)

Ψ ` commit rd : Γ → Γ ⊕ {rd : ptr(σ)}

commit creates a shared pointer type.

rd stores a (label) pointer to the value which has now been moved into the

heap.
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Ψ,Γ ` rs : ptr〈τ0, . . . , τn, σ〉
(T-Ld-S)

Ψ ` rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

Ψ,Γ ` rs : uptr〈τ0, . . . , τn, σ〉
(T-Ld-U)

Ψ ` rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}
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Ψ,Γ ` rd : ptr〈τ0, . . . , τn, σ〉 Ψ,Γ ` rs : τn τn 6= uptr(σ′)
(T-St-S)

Ψ ` Mem[rd + n] := rs : Γ → Γ

Updating shared data should not involve a change in type.

Ψ,Γ ` rd : uptr〈τ0, . . . , τn, σ〉 Ψ,Γ ` rs : τ τ 6= uptr(σ′)
(T-St-U)

Ψ ` Mem[rd + n] := rs : Γ → Γ ⊕ {rd : uptr〈τ0, . . . , τn−1, τ , σ〉}
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Ψ,Γ ` sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ` salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

Ψ,Γ ` sp : uptr〈τ1, . . . , τn, σ〉
(T-Sfree)

Ψ ` sfree n : Γ → Γ ⊕ {sp : uptr(σ)}

Stack underflows are ruled out by the type system.

What about stack overflows??
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The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

R(sp) = uptr〈ν0, . . . , νp〉 p + n > MaxStack
(E-Overflow1)

(H,R, salloc n; I) → StackOverflow

Where StackOverflow is a new special machine state.

This is similar to ”error” terms in our previous discussion on type safety.
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The rules for typing instruction sequences, register files, heaps and machine

states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

Ψ ` I : τ
(T-Gen)

Ψ ` I : ∀ρ · τ

ρ is an allocated type variable possibly occurring in τ .

Type of labels can be instantiated by the following rule.

We replace occurrences of ρ by any desired type τ ′.

Ψ,Γ ` ν : ∀ρ · τ
(T-Inst)

Ψ,Γ ` ν : τ [ρ 7→ τ ′]
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Example

ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

We would like to assign to this instruction sequence, the type

τ = ∀s · Code{Γ} where

Γ = {sp : uptr〈Int, s〉, r1, r2 : Top, r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top}}

where allocated type variable sp represents an arbitrary chunk of memory.

Let Γ1 = Γ ⊕ {r1 : Int} and Γ2 = Γ1 ⊕ {sp : uptr(s)}.

For any heap type Ψ we have the following typing derivation.
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·
·
·

Ψ, Γ2 ` r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top} Code(Γ2) v Code{. . .}
(T-Sub)

Ψ, Γ2 ` r3 : Code(Γ2)
(T-Jump)

Ψ ` jump r3 : Code(Γ2)

Ψ, Γ1 ` sp : uptr〈Int, s〉
(T-Sfree)

Ψ ` sfree 1 : Γ1 → Γ2

·
·
·

Ψ ` jump r3 : Code(Γ2)
(T-Seq)

Ψ ` sfree 1; jump r3 : Code(Γ1)

·
·
·

Ψ ` r1 := 0 : Γ → Γ1

·
·
·

Ψ ` sfree 1; jump r3 : Code(Γ1)
(T-Seq)

Ψ ` r1 := 0; sfree 1; jump r3 : Code(Γ)
(T-Gen)

Ψ ` r1 := 0; sfree 1; jump r3 : ∀s · Code(Γ)
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·
·
·
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·
·
·
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·
·
·

Ψ ` r1 := 0 : Γ → Γ1

·
·
·
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(T-Seq)
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260-a



Type Safety for TAL-1

Progress: If ` M then there is some M ′ such that M → M ′.

Preservation: If ` M and M → M ′ then either M ′ is StackOverflow, or ` M ′.
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The Java Security Manager

Allows or disallows various operations.

Various kinds of operations (reading or writing files, connecting to another

machine) requires asking the security manager for permission.

Security managers are objects of the SecurityManager class.
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public class BadClass {

public static void main(String args[]) {

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command successful!

The local file gets deleted, if the user has permissions from the operating

system.

263



public class BadClass {

public static void main(String args[]) {

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command successful!

The local file gets deleted, if the user has permissions from the operating

system.

263-a



What if such code is present in some applet loaded by a web-browser?

import java.applet.Applet; import java.awt.Graphics;

public class BadApplet extends Applet{

String text;

public void init() {

try { Runtime.getRuntime().exec(”/bin/rm −rf /path/to/filexyz”);

} catch (Exception e) { text = ”Deletion command failed: ” + e; return; }

text = ”Deletion command successful!”;

}

public void paint(Graphics g){ g.drawString(text, 15, 25); }

}
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This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

Loading this page in a web browser shows:

Deletion command failed: java.security .AccessControlException:

access denied (java. io .FilePermission /bin/rm execute)

The web browser automatically give restricted permissions to applets.

The sandbox associated with a class depends upon the source from where it

was loaded.
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The typical sequence used for potentially dangerous operations:

• User program makes some request to the Java API.

• The Java API asks the security manager for permissions.

• If the security manager doesn’t want to allow this operation, it throws

back an exception which is thrown back to the user program.

• Otherwise the security manager does nothing and the Java API completes

the operation.

In the previous example, the user program calls the exec method, which calls

the checkExec method on the security manager to check for permission.
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The code executed on calling exec is similar to this:

public process exec (String command) throws IOException {

...

SecurityManager sm = System.getSecurityManager();

if (sm != null) {

sm.checkExec();

// security exception can be raised here

}

// remaining code follows

...

}
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Another example: reading files.

// open a file

FileInputStream fis = new FileInputStream (”somefile”);

// read a byte

int x = fis.read();

The code executed on calling FileInputStream is similar to

public FileInputStream (String name) throws FileNotFoundException {

SecurityManager sm = System.getSecurityManager();

if (sm != null) { sm.checkRead(name); }

try { open (name);

} catch (IOException e) {

throw new FileNotFoundException (name);

}

}
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The System class has various useful data and functions which are global for the

whole virtual machine.

The security manager is obtained by getSecurityManager method, and null is

returned if no security manager has been set.

The security manager is set by setSecurityManager method, and an exception

is raised if the security manager has already been set.

Hence once the security manager has been set, it cannot be modified.

In particular, java applications can set the security manager before executing

remote applets, so that these applets don’t try to set their own security

manager.
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Defining one’s own security manager: we extend the SecurityManager class and

override the functions as required.

public class NewSecurityManager extends SecurityManager {

public void checkExec (String cmd) {

// always disallow exec

throw new SecurityException (”exec not allowed”)

}

}
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Modifying the BadClass to use this security manager.

public class NewBadClass {

public static void main(String args[]) {

SecurityManager sm = new NewSecurityManager();

System.setSecurityManager(sm);

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command failed: java.lang.SecurityException: exec not allowed
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Examples of methods of the security manager.

• checkRead (String file): called e.g. by FileInputStream (String file).

• checkWrite (String file): called by FileOutputStream (String file).

• checkDelete (String file)

Note that while creating a FileInputStream object requires a checkRead call, the

actual read() operations on the file input stream requires no permission.

• A trusted class can choose to deliver the FileInputStream object to an

untrusted class which can then read from the file.

• It is efficient to check permissions only once.
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The Access Controller

• Has functions similar to the security manager.

• Provides easy enforcement of fine grained security policies.

• The security manager works most of the time by calling the access

controller.

• Implemented by the AccessController class, accessed through its static

methods.
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Involves the following four classes.

• The CodeSource class: represents the source from which a certain class was

loaded, an an optional list of certificates which was used to sign that code.

• The Permission and Permissions classes: represent various kinds of

permissions.

• The Policy class: a policy maps code source objects to permission objects.

Only one policy can be associated with the JVM at any point of time, like

the security manager. But the policy can be modified.

• The ProtectionDomain class: a protection domain represents all the

permissions granted to a particular code source.
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A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

Permission objects for accessing files are members of the FilePermission class

(subclass of the Permission class).

• The type is FilePermission.

• The name is the name of the file.

• Possible actions are ”read”, ”write”, ”delete” and ”execute”.

Permission objects are used for requesting permissions as well as for

representing granted permissions.
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The security manager, on receiving the checkExec(”/bin/rm”) call, would

normally construct the following permission object

FilePermission fp = new FilePermission (”/bin/rm”, ”execute”);

and then query the access controller.

AccessController.checkPermission (fp);

Other examples:

FilePermission fp1 = new FilePermission (”/bin/∗”, ”execute”);

FilePermission fp2 = new FilePermission (”/home/userx”, ”read, write”);

SocketPermission sp1 = new SocketPermission (”hostname:port”, ”connect”);

SocketPermission sp1 = new SocketPermission (”hostname:port”, ”accept, listen”);
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Policies are specified by objects of Policy class.

It can be obtained and set using getPolicy () and setPolicy (Policy p).

Policy objects can be created by reading from a file which lists the policy rules.

Typically done at startup time:

java −Djava.security.manager −Djava.security.policy=<policyfilename> <class> <args>

appletviewer −J−Djava.security.policy=<policyfilename> file.html
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The policy file have rules mapping code sources to sets of permissions.

grant codeBase ”file:/home/userxyz/classes” {

permission java.io.FilePermission ”/bin/rm” ”execute”;

permission java.net.SocketPermission ”localhost:1024−” ”listen, accept”;

};

grant signedBy <signer>, codeBase ”http://www.xyz.com” {

permission ...

...

};
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A protection domain groups a code source with a set of permissions.

The class loader is supposed to associate a protection domain with a class

when it loads the class.

The protection domain associated with each class is used by the access

controller when it is called to check a permission using the checkPermission()

method.

C3

classes protection domains

permissions

C2

C1

C4

code source CS1

code source CS2

code source CS3
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Stack inspection

Allowing or disallowing a permission depends on the context in which the

checkPermission method was called.

The access controller needs to examine the protection domains associated with

all the classes on the stack.

The permission is granted only if all the protection domains on the stack have

this permission.

In our old example, the BadClass.main() method for deleting a file calls the

Runtime.exec() method which calls the AccessController.checkPermission() to

check execute permission on /bin/rm.

Further, the BadClass.main() method itself may be called by some other

method m() of class C.
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We get the following stack.

AccessController.checkPermission()

Runtime.exec()

BadClass.main()

C.m()

. . .

The execute permission should be granted only if all the classes on the stack

have that permission in their protection domain.

Hence the access controller checks that all frames from the top of the stack to

the bottom have this permission in the protection domains of the respective

classes.
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Sometimes a trusted class may choose to give its permissions to lower frames

on the stack.

E.g. an untrusted applet may call some routine to draw something on the

screen, and the routine requires some local font file.

This is done using the doPrivileged() method.

untrustedclass { f() { ... trustedclass.draw() ...}}

trustedclass {

public void draw {

...

AccessController.doPrivileged (new PrivilegedAction () {

public Object run () {

// privileged code here

... <read font file> ...

} }); }}
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Instead of the doPrivileged() method

AccessController.doPrivileged (new PrivilegedAction () {

public Object run () {

<privileged code>

}

});

earlier versions used beginPrivileged() and endPrivileged() calls.

AccessController.beginPrivileged();

<privileged code>

AccessController.endPrivileged();
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To understand the stack inspection algorithm let us assume the following

operations.

• enablePrivilege(T )

• disablePrivilege(T )

• checkPrivilege(T )

• revertPrivilege(T )

where T is a target (permission in the Java terminology) we wish to protect.
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Actions taken by these operations:

• enablePrivilege(T ) puts an enabledPrivilege(T ) flag on the current stack

frame if the current class has access to T according to the policy.

• disablePrivilege(T ) puts a disabledPrivilege(T ) flag on the current stack

frame (and removes enabledPrivilege(T ) flag if present).

• revertPrivilege(T ) removes enabledPrivilege(T ) and disabledPrivilege(T ) flags

from the current stack frame if present.

• checkPrivilege(T ) examines the stack as follows . . .
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checkPrivilege (T) {

for SF from top stack frame to bottom stack frame {

if (policy doesn’t allow the class in SF to access T) throw ForbiddenException;

if (SF has enabledPrivilege (T) flag) return;

if (SF has disabledPrivilege (T) flag) throw ForbiddedException;

}

return; // reached bottom of stack

}
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The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T ) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

– P ∧ Q says s means that both P and Q say s.

– P⇒Q means that P speaks for Q, i.e. P has at least as much authority

as Q.
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We assume a set of atomic statements and atomic principals.

principal P ::=

AtomicPrincipal

P1 ∧ P2

P1 | P2

statement s ::=

AtomicStatement

s1 ∧ s2

s1→s2

P says s1

P1⇒P2
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Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

Intuitively, from s1 ∧ s2 ∧ s3 we should be able to prove s.

For this we require certain rules (axioms) for making proofs.
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Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

The ABLP statement

(P says s) ∧ ((P says s)→s)→s

is an instance of the propositional logic statement

(X ∧ (X→Y ))→Y

Hence both ABLP statements are true.
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2 If s and s→s′ then s′.

3 (P says s ∧ P says (s→s′))→P says s′

We can draw conclusions from statements made by principals.

4 If s then P says s for every principal P .

True ABLP statements are supported by all principals.
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Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

We use the following steps.

(s1 ∧ s2)→s1 by (1)

Alice says ((s1 ∧ s2)→s1) by (4)

Alice says s1 by (3)
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Axioms about principals

5 (P ∧ Q) says s ≡ (P says s) ∧ (Q says s)

6 (P | Q) says s ≡ P says (Q says s)

7 (P = Q)→(P says s ≡ Q says s)

= is equality on principals.

8 (P1 | (P2 | P3)) = ((P1 | P2) | P3)

Quoting is associative.
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9 (P1 | (P2 ∧ P3)) = (P1 | P2) ∧ (P1 | P3)

Quoting distributes over conjunction

10 (P⇒Q) ≡ (P = P ∧ Q)

11 (P says (Q⇒P ))→(Q⇒P )

A principal is free to choose a representative.
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Example We want to conclude s from the three statements:

– (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

– Charlie | Alice says s

– (Alice says s)→s

(Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

→(Charlie⇒(Alice ∧ Bob)) by (11)

(Charlie⇒(Alice ∧ Bob)) by (2)

Charlie = (Charlie ∧ Alice ∧ Bob) by (10)

Charlie says (Alice says s) by (6)

(Charlie ∧ Alice ∧ Bob) says (Alice says s) by (7,2)
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Alice says (Alice says s) by (5,1,2)

Alice says ((Alice says s)→s) by (4)

Alice says s by (3)

s by (2)
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Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

If some code C was signed and K is the corresponding public key then we have

the statement

K says (C⇒K) (S2)
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If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

Hence from S1, S2 and S3 we can conclude F⇒S.
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For each target T we treat Ok(T ) as an atomic statement.

It means that access to T is permitted.

We consider the axiom

(T says Ok(T ))→Ok(T ) (S4)

A target is always free to grant permission to itself.

Targets are dummy principals. They never speak, but other (non-dummy)

principals representing them may speak for them.

Target credentials T is the set of such axioms for all targets T .
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Policy for a virtual machine M is defined by a set

access credentials AM of statements of the form P⇒T where P is a principal

and T is a target.

This rule means that the local policy of virtual machine M allows P to access

T .
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Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T ) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T ) then we update: BF := BF ∪{Ok(T )}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.
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Disabling privileges

If stack frame F calls disablePrivilege(T ) then we update

BF := BF \ {s | Ok(T ) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T ) then we update BF := BF \ {Ok(T )}

Checking privileges

When F calls checkPrivilege(T ) then we check that Ok(T ) can be concluded

from the set

Φ ∪ T ∪ AM ∪ {F says s | s ∈ BF}.
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Example Assume at the beginning that BF1
= {}.

Now F1 calls enablePrivilege(T1). We have BF1
= {Ok(T1)}.

F1 calls checkPrivilege(T1).

Hence we take the statement F1 says Ok(T1).

Let S1 be the signer of the code which produced the frame F1.

Then we conclude F1⇒S1 from the frame credentials Φ.

If the access credentials set AM has a statement S1⇒T1

then using the statement (T1 says Ok(T1))→Ok(T1) from T

we conclude Ok(T1).
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Now F1 makes a function call and the new frame F2 calls enablePrivilege(T2).

We have BF2
= {F1 says Ok(T1),Ok(T2)}

F2 makes function call and the new frame F3 calls disablePrivilege(T1).

We have BF3
= {F2 says Ok(T2)}.

F3 makes function call and the new frame F4 calls enablePrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2),Ok(T2)}.

F4 calls revertPrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2)}.
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Now F4 calls checkPrivilegeT2.

We take the statement (F4 | F3 | F2) says Ok(T2) i.e.

F4 says (F3 says (F2 says Ok(T2))).

Suppose from the frame credentials Φ imply that

F4⇒S4 F3⇒S3 F2⇒S2

Suppose that AM further has statements

S4⇒T2 S3⇒T2 S2⇒T2

Then we conclude:

T2 says (F3 says (F2 says Ok(T2)))

T2 says (T2 says (F2 says Ok(T2)))
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T2 says (T2 says (T2 says Ok(T2)))

Further (T2 says Ok(T2))→Ok(T2) is in T .

Hence T2 says (T2 says ((T2 says Ok(T2))→Ok(T2))).

Hence T2 says (T2 says Ok(T2)).

Similarly T2 says Ok(T2).

Hence Ok(T2).
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Security protocols

For secure communication over an insecure network.

• Adversary can spy on messages,

• delete messages,

• modify messages,

• impersonate as Alice to Bob,

• deny having sent or received a message

• . . .
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Encrypting and decrypting messages

. . . the naive way:

Instead of Alice −→ Bob:

This is Alice. My credit card number is 1234567890123456

We have Alice −→ Bob:

6543210987654321 si rebmun drac tiderc yM .ecilA si sihT

Alice and Bob agree on the method of encryption and decryption.

ciphertext
encryption decryption

plaintext original plaintext
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Cryptography with keys

Today we instead have the following picture:

ciphertext
encryption decryption

K1
K2

plaintext original plaintext

The encryption and decryption algorithms are assumed to be publicly known.

The security lies in the (secret) keys.

8109675
add mod 10 add mod 10

47652314765231

4 6
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Cryptography of the pre-computer age Substitution ciphers: each character

is mapped to the another character. The famous Caesar cipher: A → D, B →

E, . . . , Z → C.

transposition cipher: shuffling around of characters.

Plaintext: this is alice my credit card number is 1234567890123456

thisisalic

emycreditc

ardnumberi

s123456789

0123456

Ciphertext: teas0 hmr11 iyd22 scn33 iru44 sem55 adb66 lie7i tr8cc

i9
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Private key cryptography

encryption decryption
{m}k

k k

m m

• The same key k is used for encryption and decryption

• Given message m and key k, we can compute the encrypted message {m}k

• Given the encrypted message {m}k and the key k, we can compute the

original message m

311



Private key cryptography

Suppose Kab is a private key shared between A and B.

A can send a message m to B using private key cryptography:

A −→ B : {m}Kab

Only B can get back the message m.

A and B need to agree beforehand on a key Kab which should not be disclosed

to any one else
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Public key cryptography

encryption decryption
{m}k

k

m m

k
−1

• A chooses pair (Ka,K
−1
a ) of keys such that

– messages encrypted with Ka can be decrypted with K−1
a

– K−1
a cannot be calculated from Ka

• A makes Ka public: this is the public key of A

• A keeps K−1
a secret: this is the private key of A
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Public key cryptography

Then any B can send a message to A which only A can read:

B −→ A : {m}Ka

Sometimes we have the additional property: messages encrypted with K−1
a can

be decrypted with Ka

Then A can send a message m to B

A −→ B : {m}K−1
a

and B is sure that the message m was encrypted by A. Hence we have

authentication
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One way hash functions

Properties of a one way hash function H:

– Given M , it is easy to compute H(M) (called message digest).

– Given H(M) is is difficult to find M ′ such that H(M) = H(M ′).

A sends to B the message M together with the encrypted hash value

{H(M)}Kab
.

Efficient means of demonstrating authenticity, since H(M) is of a fixed size.
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Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms are

perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)
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• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)
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Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.
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A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?
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Cryptography and cryptographic protocols

• Cryptography deals with algorithms for encryption, decryption, random

number generation, etc. Cryptographic protocols use cryptography for

exchanging messages.

• Attacks against cryptographic primitives involves breaking the algorithm

for encryption, etc. Attacks against cryptographic protocols may be of

completely logical nature.

• Cryptographic protocols may be insecure even if the underlying

cryptographic primitives are completely secure.

• Hence we often separate the study of cryptographic protocols from that of

cryptographic primitives.
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Difficulty in ensuring correctness of cryptographic protocols

• Infinitely many sessions

• Infinitely many participants

• Infinitely many nonces

• Sessions are interleaved

• Adversary can replace messages by any arbitrary message: infinitely

branching system
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Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.

Published in 1978. Attack found after 17 years in 1995 by Lowe.
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Man in the middle attack

A -

{A,Na}Kc

C (A) -

{A,Na}Kb
B

A �

{Na, Nb}Ka

C (A)�

{Na, Nb}Ka

B

A -

{Nb}Kc

C (A) -

{Nb}Kb
B

Even very simple protocols may have subtle flaws
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Consequences

Suppose B is the server of a bank.

C, who can now pretend to be A:

C −→ B : {Na, Nb, transfer £5000 from account of A to account of C}Kb
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A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb

Is it secure?
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A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb

Does this affect security?
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Type flaw

An attack on the variant of the Needham-Schroeder-Lowe protocol [Millen]:

C -

{A,C}Kb
B

B -

{C,Nb, B
︸ ︷︷ ︸

Nc

}Ka

A

C �

{Nb, B,Na, A}Kc

A
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The Spi calculus

Abadi, Gordon, 1997

• Extends pi calculus which provides a language for describing processes.

• We treat protocols as processes, where messages sent and received by

processes may involve encryption.

• Security is defined as equivalence between processes in the eyes of an

arbitrary environment.

• Environment is also a spi calculus process.

• We study information flow to check whether secrets are leaked.
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• A process may involve sequences of actions for sending and receiving

messages on channels.

• A Processes may contain smaller processes running in parallel.

Use halt to denote a finished process: it does nothing.

We write sendc〈M〉;P to denote a process that sends the message M on

channel c after which it executes the process P .

recvc(x);Q denotes a process that is listening on the channel c.

On receiving some message M on this channel then it executes process Q[M/x].
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The process

P1 , recvc(x); sendd〈x〉; halt

on receiving message M on channel c, sends M on channel d and then halts.

The process

P2 , sendc〈M〉; halt

sends M on channel c and halts.

Putting them in parallel gives the process

P3 , P1 | P2

The message sent by P1 is received by P2. Hence P3 as a whole can make a

”silent” transition to the process sendd〈M〉; halt.
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Further the process

P5 , P3 | P4

where

P4 , recvd(x); halt

can halt after making only silent transitions.

Intuitively P5 represents the protocol

P2 −→ P1 : M (on channel c)

P1 −→ P4 : M (on channel d)
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We can restrict access to channels.

The process new c;P creates a fresh channel c and can be used inside process

P . No outside process can access c.

(c is like a bound variable whose scope is inside P )

We consider processes to be the same after renaming of bound names.

Consider the process

(new c; sendc〈M〉; halt) | (recvc(x); halt)

No communication happens between the two smaller processes.

The above process is the same as the following one.

(new d; sendd〈M〉; halt) | (recvc(x); halt)
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Hence new allows us to create channels for secure communication.

Consider the process

new c; (sendc〈M〉; halt | recvc(x);P | recvc(x);Q)

Communication can take place between first and second subprocess to create

the process new c; (P [M/x] | recvc(x);Q)

Or communication can take place between first and third subprocess to create

the process new c; (recvc(x);P | Q[M/x])

However the process

(new c; (sendc〈M〉; halt | recvc(x);P )) | recvc(x);Q

can only lead to the process (new c;P [M/x]) | recvc(x);Q
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Channels can also be sent as messages. Consider the following protocol where

cAB is a freshly created channel whereas cAS and cSB are long term channels.

A −→ S : cAB on cAS

S −→ B : cAB on cSB

A −→ B : M on cAB

can be represented as follows where F (y) is a process involving variable y.

A , new cAB ; sendcAS
〈cAB〉; sendcAB

〈M〉.halt

S , recvcAS
(x); sendcSB

〈x〉; halt

B , recvcSB
(x); recvx(y);F (y)

P , new cAS ; new cSB ; (A | S | B)

P makes silent transitions to new cAS ; new cSB ;F (M).
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Processes can perform computations like

• encryption, decryption (we will deal with only symmetric key encryption)

• pairing, unpairing

• increments, decrements

• checking equality of messages

The process

recvc(x1, x2, x3); case x1 of

{y1}K : check (y1 == x2); sendc〈y1, succ (x3)〉; halt

receives an input of the form {M}K ,M,N on channel c and sends out

y1, succ (x3) on channel c.
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The syntax

M ::= term

n name

(M,N) pair

0 zero

succ (M) successor

{M1, . . . ,Mk}N encryption

x variable

335



P ::= process

sendM 〈N1, . . . , Nk〉;P output

recvM (x1, . . . , xk);P input

halt halt

P | Q parallel composition

repeat P replication

new n;P restriction

check (M == N);P comparison

let (x, y) = M ;P unpairing

case M of 0 : P , succ (x) : Q integer case analysis

case M of {x1, . . . , xk}N : P decryption
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Intuitively, repeat P represents infinitely many copies of P running in parallel.

In other words we can consider repeat P to represent P | P | P | . . .

Consider

P , recvc(x); halt

P1 , sendc(M1); halt

P2 , sendc(M2); halt

The process

P1 | P2 | repeat P

can make silent transitions (internal communication) to create the process

repeat P
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A one message protocol using cryptography, where KAB is a symmetric key

shared between A and B for private communication.

A −→ B : {M}KAB
on cAB

This can be represented as

A , sendcAB
〈{M}KAB

〉; halt

B , recvcAB
(x); case x of {y}KAB

: F (y)

P , new KAB; (A | B)

The key KAB is restricted, only A and B can use it.

The channel cAB is public. Other principals may send messages on it or listen

on it.

P can make silent transitions to new KAB ;F (M).
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Formal semantics

We now need to define how processes execute.

For example we would like

sendc〈M〉;P | recvc(x);Q
τ

−→ P | Q[M/x]

where τ denotes a silent action (internal communication).

Let fn(M) and fn(P ) be the set of free names in term M and process P

respectively.

Let fv(M) and fv(P ) be the set of free variables in term M and process P

respectively.

Closed processes are processes without any free variables.
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Let P , new c; new K; recvd(x); case x of {y}K ′ : sendd〈{y}K , z, c〉; halt.

We have

fn(sendd〈{y}K , z, c〉; halt) = {c, d,K}

fv(sendd〈{y}K , z, c〉; halt) = {y, z}

fn(case x of {y}K ′ : sendd〈{y}K , z, c〉; halt) = {c, d,K,K ′}

fv(case x of {y}K ′ : sendd〈{y}K , z, c〉; halt) = {x, z}

fn(P ) = {d,K ′}

fv(P ) = {z}

fn({y}K) = {K}

fv({y}K) = {y}

340



First we define reduction relation > on closed processes:

repeat P > P | repeat P (R-Repeat)

check (M == M);P > P (R-Check)

let (x, y) = (M,N );P > P [M/x,N/y] (R-Let)

case 0 of 0 : P , succ (x) : Q > P (R-Zero)

case succ (M) of 0 : P , succ (x) : Q > Q[M/x] (R-Succ)

case {M}N of {x}N : P > P [M/x] (R-decrypt)
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When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0);P (comparison fails).

let (x, y) = 0;P (unpairing fails)

case (M,N ) of 0 : P , succ (x) : Q (not an integer)

case (M,N ) of {x, y}K : P (not an encrypted message)

case {M,N}K′ of {x, y}K : P where K 6= K ′

This is also based on the perfect cryptography assumption: distinct terms

represent distinct messages.
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A barb β is either

• a name n (representing input on channel n), or

• a co-name n (representing output on channel n)

An action is either

• a barb (representing input or output to the outside world), or

• τ (representing a silent action i.e. internal communication)

We write P
α

−→ Q to mean that P makes action α after which Q is the

remaining process that is left to be executed.

343



Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which P will be executed.

Abstractions and concretions can be combined:

〈M〉P @ (x)Q = P | Q[M/x]
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Formally an abstraction F is of the form

(x1, . . . , xk)P

where k ≥ 0 and P is a process.

A concretion C is of the form

(new n1, . . . , nl)〈M1, . . . ,Mk〉P

where n1, . . . , nl are names, l, k ≥ 0 and P is a process.

For F , (x1, . . . , xk)P and C , (new n1, . . . , nl)〈M1, . . . ,Mk〉Q

with {n1, . . . , nl} ∩ fn(P ) = ∅ we define interaction of F and C as

F @ C , new n1; . . . new nl; (P [M1/x1, . . . ,Mk/xk] | Q)

C @ F , new n1; . . . new nl; (Q | P [M1/x1, . . . ,Mk/xk])
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An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new )〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F
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−→ (new )〈M1, . . . ,Mk〉P (C-Out)

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P (C-In)

P
m
−→ F Q

m
−→ C

(C-Inter1)
P | Q

τ
−→ F @ C

P
m
−→ C Q

m
−→ F

(C-Inter2)
P | Q

τ
−→ C @ F
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Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new )〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .
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P > Q Q
α

−→ A
(C-Red)

P
α

−→ A

P
α

−→ A
(C-Par1)

P | Q
α

−→ A | Q

Q
α

−→ A
(C-Par2)

P | Q
α

−→ P | A

where

P1 | (x1, . . . , xk)P2 , (x1, . . . , xk)(P1 | P2)

P1 | (new n1, . . . , nk)〈M1, . . . ,Ml〉P2 , (new n1, . . . , nk)〈M1, . . . ,Ml〉(P1 | P2)

provided that x1, . . . , xk /∈ fv(P1) and n1, . . . , nk /∈ fn(P1)
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For the previous example we have using (R-Succ):

case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt) > sendd〈0〉; halt

and using (C-Out):

sendd〈0〉; halt
d

−→ 〈0〉halt

hence using (C-Red):

case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)
d

−→ 〈0〉halt

hence using (C-Par2):

halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)
d

−→ halt | 〈0〉halt

= 〈0〉(halt | halt)
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Consider P , (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)

We would like P
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

but not P
τ

−→ P1[0/x] | new n; (P2 | recvc(x);P3)

Hence we have the rule

P
α

−→ A α /∈ {n, n}
(C-New)

new n;P
α

−→ new n;A

where

(new m)(x1, . . . , xk)P , (x1, . . . , xk)new m;P

(new m)(new m1, . . . ,mk)〈M1, . . . ,Ml〉P , (new m,m1, . . . ,mk)〈M1, . . . ,Ml〉P

provided that m /∈ {m1, . . . ,mk}

350



Consider P , (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)

We would like P
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

but not P
τ

−→ P1[0/x] | new n; (P2 | recvc(x);P3)

Hence we have the rule

P
α

−→ A α /∈ {n, n}
(C-New)

new n;P
α

−→ new n;A

where

(new m)(x1, . . . , xk)P , (x1, . . . , xk)new m;P

(new m)(new m1, . . . ,mk)〈M1, . . . ,Ml〉P , (new m,m1, . . . ,mk)〈M1, . . . ,Ml〉P

provided that m /∈ {m1, . . . ,mk}
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We have sendc〈0〉;P2
c

−→ 〈0〉P2

and recvc(x);P3
c

−→ (x)P3

hence sendc〈0〉;P2 | recvc(x);P3
τ

−→ 〈0〉P2 @ (x)P3 = P2 | P3[0/x]

Since τ /∈ {c, c}

hence new c; (sendc〈0〉;P2 | recvc(x);P3)
τ

−→ new c; (P2 | P3[0/x])

Hence (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])
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Consider P , (new K; sendc〈K〉; halt) | (recvc(x); sendd〈x〉; halt)

We have sendc〈K〉; halt
c

−→ (new )〈K〉halt

hence new K; sendc〈K〉; halt
c

−→ new K; (new )〈K〉halt = (new K)〈K〉halt

Also recvc(x); sendd〈x〉; halt
c

−→ (x)sendd〈x〉; halt

Hence

P
τ

−→ (new K)〈K〉halt @ (x)sendd〈x〉; halt = (new K)(halt | sendd〈K〉; halt)
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Equivalence on processes

A test is of the form (Q,β) where Q is a closed process and β is a barb.

A process P passes the test (Q,β) iff

(P | Q)
τ

−→ Q1 . . .
τ

−→ Qn
β

−→ A

for some n ≥ 0, some processes Q1, . . . , Qn and some agent A.

Q is the ”environment” and we test whether the process together with the

environment inputs or outputs on a particular channel.

Testing preorder P1 v P2 iff for every test (Q,β), if P1 passes (Q,β) then P2

passes (Q,β).

Testing equivalence P1 ' P2 iff P1 v P2 and P2 v P1.
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Secrecy

Consider process P with only free variable x.

We will consider x as secret if for all terms M,M ′ we have P [M/x] ' P [M ′/x].

I.e. an observer cannot detect any changes in the value of x.

Example Consider P , sendc〈x〉; halt.

x is being sent out on a public channel. Consider test (Q, d) where

environment Q , recvc(x); check (x == 0); sendd〈halt〉; halt.

We have P [0/x] | Q
τ

−→ halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt).

Hence P [0/x] passes the test. However P [succ (0)/x] fails the test.

Hence P does not preserve secrecy of x.
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Information flow analysis for the Spi-calculus

We classify data into three classes

secret data which should not be leaked

public data which can be communicated to anyone

any arbitrary data

Subsumption relation on classes:

secret � any

public � any

T � T for T ∈ {secret, public, any}
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An environment E provides information about the classes to which names and

variables belong.

We define typing rules for the following kinds of judgments

` E environment E is well formed

E ` M : T term M is of class T in environment E

E ` P process P is well typed in environment E

E.g. secret data should not be sent on public channels.

Data of level any should be protected as if it is of level secret, but can be

exploited only as of it had level public.
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Our goal is to define typing rules to filter out processes that leak secrets.

Informally we would like to show that if environment E has only any variables

and public names and E ` P then P does not leak any variables x ∈ dom(E).

Our previous example:

P , sendc〈x〉; halt

Consider E = {x : any, c : public :: L1, d : public :: L2}

(L1 and L2 will be explained later.)

x is of level any but is sent out on c of level public, which will be forbidden by

our typing rules.
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Consider protocol

A −→ S : A,B

S −→ A : {A,B,Na, {Nb}Ksb
}Ksa

A −→ B : {Nb}Ksb

A principal X may play the role of A in one session and of B in another session.

We need a clear way of distinguishing the messages received and their

components.

This is important only for messages sent on secret channels and for messages

encrypted with public keys.

We adopt the following standard format:

messages sent on secret channels should have three components of levels secret,

any and public respectively.
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Consider protocol

B −→ A : Nb

A −→ B : {M,Nb}Kab

By replaying nonces, an attacker can find out whether the same M is sent

more than once, or different ones. Hence he gets

some partial information about the contents of the messages.

To prevent this we include an extra fresh nonce (confounder) in each message

encrypted with secret keys.

A −→ B : {M,Nb,Na}Kab
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We adopt the following standard format for messages encrypted with secret

keys: {M1,M2,M3, n}K

where M1 has level secret, M2 has level any, M3 has level public,

and n is the confounder.

n can be used as confounder only in this term and nowhere else.

This information is remembered by the environment E.

I.e. if n : T :: {M1,M2,M3, n}K ∈ E then

we know that n is used as a confounder only in that message.
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The typing rules

The empty environment is denoted ∅.

Well formed environments:

` ∅

` E x /∈ dom(E)

` E, x : T

` E

E ` M1 : T1 . . . E ` Mk : Tk

n /∈ dom(E)

E ` N : R

` E,n : T :: {M1, . . . ,Mk, n}N
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Environment lookups and subsumption:

E ` M : T T v R

E ` M : R

` E x : T ∈ E

E ` x : T

` E n : T :: {M1, . . . ,Mk, n}N ∈ E

E ` n : T
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` E

E ` 0 : public

E ` M : T

E ` succ (M) : T

E ` M : T E ` N : T

E ` 〈M,N 〉 : T
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Encryption

E ` M1 : T . . . E ` Mk : T E ` N : public T = public if k = 0

E ` {M1, . . . ,Mk}N : T

E ` M1 : secret

E ` N : secret

E ` M2 : any E ` M3 : public

n : T :: {M1,M2,M3, n}N ∈ E

E ` {M1,M2,M3, n}N : public
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E ` M : public E ` M1 : public . . . E ` Mk : public E ` P

E ` sendM 〈M1, . . . ,Mk〉;P

E ` M : secret E ` M1 : secret E ` M2 : any E ` M3 : public E ` P

E ` sendM 〈M1,M2,M3〉;P

Only public data may be sent on public channels.

On secret channels, data is always sent in the standard format we have agreed

upon.

We consider pairing as left-associative.

For example (M1,M2,M3,M4) is same as ((M1,M2),M3,M4)
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Similar rules for inputs.

E ` M : public E, x1 : public, . . . , xk : public ` P

E ` recvM (x1, . . . , xk);P

E ` M : secret E, x1 : secret, x2 : any, x3 : public ` P

E ` recvM (x1, x2, x3);P

The appropriate class information for the input variables is added to the

environment, and the new environment is used for typing the remaining

process.
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` E

E ` halt

E ` P E ` Q

E ` P | Q

E ` P

E ` repeat P

E, n : T :: L ` P

E ` new n;P

The newly created name can be chosen to be kept secret or can be revealed,

and can be chosen to used as a confounder in some message.
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E ` M : T E ` N : R E ` P T ,R ∈ {public, secret}

E ` check (M == N);P

Equality checks are not allowed on data of class any to prevent implicit

information flow.

368



Example Consider P , recvc(y); check (x == y); sendc〈0〉; halt where x is the

data whose secrecy we are interested in.

Secrecy of x is not maintained. P [M/x] and P [M ′/x] are not equivalent for

M 6= M ′.

Consider test (Q, d) where Q , sendc〈M〉; recvc(z); sendd〈0〉; halt.

P [M/x] | Q passes the test:

P [M/x] | Q
τ

−→ check (M = M); sendc〈0〉; halt | recvc(z); sendd〈0〉; halt
τ

−→

halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt)

P [M ′/x] | Q does not pass the test.
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Similarly, case analysis on data of class any are disallowed.

E ` M : T E, x : T , y : T ` P T ∈ {public, secret}

E ` let (x, y) = M ;P

E ` M : T E ` P E, x : T ` Q T ∈ {secret, public}

E ` case M of 0 : P , succ (x) : Q
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Decryption

E ` L : T E ` N : public E, x1 : T , . . . , xk : T ` P T ∈ {secret, public}

E ` case L of {x1, . . . , xk}N : P

E ` L : T E ` N : secret T ∈ {secret, public}

E, x1 : secret, x2 : any, x3 : public, x4 : any ` P

E ` case L of {x1, x2, x3, x4}N : P

The confounder x4 in the second rule is assumed to be of type any because we

have no more information about it.
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Typing implies noleak of information

Suppose

• ` E

• all variables in dom(E) are of level any and all names in dom(E) are of

level public.

• E ` P

• P has free variables x1, . . . , xk

• fn(Mi), fn(M ′
i) ⊆ dom(E) for 1 ≤ i ≤ k.

then P [M1/x1, . . . ,Mk/xk] ' P [M1/x1, . . . ,Mk/xk]

Well typed processes maintain secrecy of the free variables (x1, . . . , xk), i.e.

they are not leaked.
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Our previous example P , recvc(y); check (x == y); sendc〈0〉; halt

We take E , {x : any, c : public :: {n}0}. c is not meant to be used as a

confounder, hence we have the dummy term {n}0.

We have ` E.

In order to show E ` P we need to find some T such that

E, y : public ` check (x == y); sendc〈0〉; halt.

But this is impossible because equality checks should not involve data of class

any.

Hence the process doesn’t type-check, as required.
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Consider P , new K; new m; new n; sendc〈{m,x, 0, n}K〉; halt.

We take E , {x : any, c : public :: {n}0}. We have ` E.

To show E ` P we choose

E′ , E,K : secret :: {K}0,m : secret :: {m}0, n : secret :: {m,x, 0, n}K

and show that E ′ ` sendc〈{m,x, 0, n}K〉; halt.

This is ok because E ′ ` m : secret, E ′ ` x : any, E′ ` 0 : public, E ′ ` n : secret,

E′ ` K : secret and E ′ ` halt.
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