
Technische Universität München

Fakultät für Informatik

Prof. Dr. H. Seidl

Dr. K. N. Verma

verma@in.tum.de

Room: MI 02.07.041

Virtual Machines

Summer Semester 2007

Exercise sheet 8 Deadline: 19 June 2007 12:00

Exercise 1: 20 Points

R
¯
eferences in functional languages correspond to variables (and pointers) in imperative

languages. Consider the following example

letrec

x = 1;

f = fn y => if y <= 0 then x

else let x = x * 2 in f (y - 1)

in f 8

x = x * 2 creates a new x which is visible only inside the function f. The result is always
1.

Now consider the following example with references:

letrec

x = ref 1;

f = fn y => if y <= 0 then !x

else let z = (x := !x * 2) in f (y - 1)

in f 8

x = ref 1 assigns to the variable x a reference to the value 1. The assignment
x := !x * 2 will modify the value of the reference-variable x. No new variable will be
created. The result is 256 (= 28).

For implementation, we introduce reference-objects as new heap objects. Reference objects
consist of the tag R and a pointer (to a value).

Give code generation functions (CodeV ) for the following expressions. Define new instruc-
tions as needed (e.g. mkref or getref).

a) ref e

creates a new reference object for the expression e and puts a pointer to it on the
stack.

b) !e

gives the value of the reference defined by the expression e.

c) e1 := e2

The reference defined by e1 is assigned the value of the expression e2, and this value
is put on the stack.

d) Translate the second example above, with ρ = ∅ and sd = 0.


