Discussion:

~

e The translation of an equation X =1t isverysimple :-)

e Often the constructed cells immediately become garbage :-(

Idea 2:

e Push a reference to the run-time binding of the left-hand side onto the stack.
e Avoid to construct sub-terms of t whenever possible !

e Translate each node of t into an instruction which performs the unifcation
with this node !!

269

Discussion:

~

e The translation of an equation X =1t isverysimple :-)

e Often the constructed cells immediately become garbage :-(

Idea 2:

e Push a reference to the run-time binding of the left-hand side onto the stack.
e Avoid to construct sub-terms of t whenever possible !

e Translate each node of t into an instruction which performs the unifcation
with this node !!

270

Let us first consider the unifcation code for atoms and variables only:

codejyap = wuatoma
codey X p = wuvar (pX)
codey _p = pop
codey X p = wuref (pX)

// to be continued :-)

271

The instruction uatoma implements the unification with the atom a:

uatom a

we -

v = S[SP]; SP—-;

switch (H[v]) {

case (A, a): break;

case (R,): H[V]= (R, new (A, a));
trail (v); break;

default: backtrack();

}

e The run-time function trail() records the a potential new binding.

e The run-time function backtrack() initiates backtracking.

272

The instruction uvari implements the unification with an un-initialized
variable:

—)
uvar i

FP+1 FP+1

S[FP+i] = S[SP]; SP-—;

273

The instruction pop implements the unification with an anonymous
variable. It always succeeds :-)

-0 . O

SP-—;

274

The instruction urefi implements the unification with an initialized variable:

FP+1 —>@ FP+1 —>

0 =mgu (x,y)

unify (S[SP], deref (S[FP+i]));
SP- —;

It is only here that the run-time function unify() iscalled :-)

275

e The unification code performs a pre-order traversal over t.

e In case, execution hits at an unbound variable, we switch from checking to

building :-)

codey f(ty,...,th) p = ustruct f/n A // test
son 1

codey t1 p

son n
codey t, p
up B
A: checkivars(f(ty,...,ty)) o // occur-check
codey f(ty,...,ty) p // building !!
bind // creation of bindings

276

The Building Block:

Before constructing the new (sub-) term #’ for the binding, we must exclude that
it contains the variable X’ on top of the stack !!!

This is the case iff the binding of no variable inside #’ contains (a reference to) X'.

— ivars(t') returns the set of already initialized variables of .

— The macro check {Y3,...,Y;} p generates the necessary tests on
the variables Y7,...,Y,:

check {Y1,..., Y} p = check (p Y1)
check (p Y>7)

check (p Yy)

277

The instruction check i
stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

D

-

FP ——

check i

checks whether the (unbound) variable on top of the

)

FP ———

if (Icheck (S[SP], deref S[FP+i]))
backtrack();

278

The instruction bind terminates the building block. It binds the (unbound)
variable to the constructed term:

bind
B " -

H[S[5P-1]] = (R, S[SP]);
trail (S[SP-1]);
SP =SP - 2;

279

The Pre-Order Traversal:

First, we test whether the topmost reference is an unbound variable.

If so, we jump to the building block.
e Then we compare the root node with the constructor f/n.
e Then we recursively descend to the children.

e Then we pop the stack and proceed behind the unification code:

280

Once again the unification code for constructed terms:

codey f(ty,...,th) p = ustruct f/n A // test
son 1 // recursive descent
codey t1 p
son n // recursive descent
codey t, p
up B // ascent to father

A: checkivars(f(ty,..., tn)) p

codey f(ty,...,th) p
bind

281

The instruction ustructi implements the test of the root node of a structure:

ustructf/n A

— S| f/n —» S| f/n
ustructf/n A

PC PC | A

switch (H[S[SP]]) {

case (S, f/n): break;

case (R,.): PC =A,; break;
default: backtrack();

}

... the argument reference is not yet popped :-)

282

The instruction soni pushes the (reference to the) i-th sub-term from the
structure pointed at from the topmost reference:

1 w son 1

— S| f/n > S| f/n

—0

S[SP+1] = deref (H[S[SP]+i]); SP++;

283

It is the instruction up B which finally pops the reference to the structure:

up B

PC PC | B

SP-—; PC =B;

The continuation address B is the next address after the build-section.

284

Example:

For our example term

f(&(X,Y),a,Z)

p={X—1Y—2,Z— 3} weobtain:

ustruct £/3 A4

son 1

ustructg/2 Ay Aj:

son 1
uref 1
son 2

uvar 2

up Bz BQI

check 1
putref 1
putvar 2

putstruct g/2 Aj:

bind

and

son 2
uatom a
son 3
uvar 3
up B,
check 1
putref 1

B12

putvar 2
putstruct g/2
putatom a
putvar 3
putstruct f/3
bind

Code size can grow quite considerably — for deep terms. In practice, though,

deep terms are “rare”

)

285

31 Clauses

Clausal code must

e allocate stack space for locals;
e evaluate the body;

o free the stack frame (whenever possible :-)

Let r denote the clause: p(Xy,..., Xe) —Q1,-+-,8n-

Let {Xy, ..., X,y } denote the set of locals of r and p the address environment:

pX,':i

Remark: The first k locals are always the formals :-)

286

Then we translate:

codec r = pushenvm // allocates space for locals

codeg g1 p
codeg g P
popenv
The instruction popenv restores FP and PC and tries to pop the current stack

frame.

It should succeed whenever program execution will never return to this stack
frame :-)

287

The instruction pushenv m

FP ——

sets the stack pointer:

pushenv m

FP ——

SP = FP + m;

288

Example:

Consider the clause 7:
a(X,Y) «— f(X, Xq), a(Xl, Y)

Then codecr vyields:

pushenv 3 mark A A: markB
putref 1 putref 3
putvar 3 putref 2

call f/2 calla/2

289

B:

popenv

32 Predicates

A predicate q/k is defined through a sequence of clauses rr =ry...7¢.
The translation of q/k provides the translations of the individual clauses 7;.

In particular, we have for f =1

codep rr = codec 1
If g/k is defined through several clauses, the first alternative must be tried.

On failure, the next alternative must be tried

— backtracking :-)

290

32.1 Backtracking

e Whenever unifcation fails, we call the run-time function backtrack().

e The goal is to roll back the whole computation to the (dynamically :-) latest
goal where another clause can be chosen —— the last backtrack point.

e In order to undo intermediate variable bindings, we always have recorded
new bindings with the run-time function trail ().

e The run-time function trail() stores variablesin the data-structure
trail:

291

TP

Trail Pointer

points to the topmost occupied Trail cell

292

TP

The current stack frame where backtracking should return to is pointed at by the
extra register BI:

FF
BF

293

A backtrack point is stack frame to which program execution possibly returns.

e We need the code address for trying the next alternative (negative
continuation address);

e We save the old values of the registers HI’, TI” and BP.

e Note: The new BP will receive the value of the current FP :-)

For this purpose, we use the corresponding four organizational cells:

FPP ———s posCont.| 0

FPold |-1
HPold |-2
TPold |-3
BPold | -4

negCont, -5

294

For more comprehensible notation, we thus introduce the macros:

posCont
FPold
HPold
TPold
BPold

negCont

for the corresponding addresses.

Remark:

Occurrence on the left

Occurrence on the right

295

n »n On

FP]

FP — 1]
FP — 2]
FP — 3]
FP — 4]
FP — 5]

saving the register

restoring the register

Calling the run-time function voi d backtrack() yields:

FP ——>— FP —
— [
backtrack();
HP 42 HP 42
TP 17 TP 17
BP BP
PC 13 PC 13

void backtrack() {
FP = BP; HP = HPold;
reset (TPold, TP);
TP = TPold; PC = negCont;
}

where the run-time function reset() undoes the bindings of variables
established since the backtrack point.

296

32.2 Resetting Variables

Idea:

e The variables which have been created since the last backtrack point can be
removed together with their bindings by popping the heap !!! :-)

e This works fine if younger variables always point to older objects.

e Bindings of old variables to younger objects, though, must be reset
manually :~(

e These are therefore recorded in the trail.

297

Functions void trail(ref u) and void reset (ref y, ref x) can
thus be implemented as:

void trail (ref u) { void reset (ref x, ref y) {
if (u < §BP-2]) { for (ref u=y; x<u; u--)
TP = TP+1; HTu]] = (RT[U]);
TP = u; }
}
}

Here, §[BP-2] represents the heap pointer when creating the last backtrack
point.

298

32.3 Wrapping it Up

Assume that the predicate g/k is defined by the clauses
We provide code for:

e setting up the backtrack point;
e successively trying the alternatives;

e deleting the backtrack point.

This means:

299

.., (f>1).

codeprr = q/k: setbtp
try Ay

try Af—l
delbtp
jump As

Ay : codec rq

Af: codec ry

Note:
e We delete the backtrack point before the last alternative :-)

e We jump to the last alternative — never to return to the present frame

300

Example:

The translation of the predicate s yields:

s/1:

setbtp
try A
delbtp
jump B

A:

pushenv 1
mark C
putref 1
call t/1

popenv

301

B:

pushenv 1
putref 1
uatom a

popenv

