
Discussion:

• The translation of an equation X̃ = t is very simple :-)

• Often the constructed cells immediately become garbage :-(

Idea 2:

• Push a reference to the run-time binding of the left-hand side onto the stack.

• Avoid to construct sub-terms of t whenever possible !

• Translate each node of t into an instruction which performs the unifcation

with this node !!

codeG (X̃ = t) ρ = put X̃ ρ

codeU t ρ

269

Discussion:

• The translation of an equation X̃ = t is very simple :-)

• Often the constructed cells immediately become garbage :-(

Idea 2:

• Push a reference to the run-time binding of the left-hand side onto the stack.

• Avoid to construct sub-terms of t whenever possible !

• Translate each node of t into an instruction which performs the unifcation

with this node !!

codeG (X̃ = t) ρ = put X̃ ρ

codeU t ρ

270

Let us first consider the unifcation code for atoms and variables only:

codeU a ρ = uatom a

codeU X ρ = uvar (ρ X)

codeU __ ρ = pop

codeU X̄ ρ = uref (ρ X)

... // to be continued :-)

271

The instruction uatom a implements the unification with the atom a:

R AR

}
default:

H[v] = (R, new (A, a));case (R,_) :
case (A, a): break;
switch (H[v]) {

backtrack();

v = S[SP]; SP−−;

trail (v); break;

uatom a

a

• The run-time function trail() records the a potential new binding.

• The run-time function backtrack() initiates backtracking.

272

The instruction uvar i implements the unification with an un-initialized

variable:

uvar i

FP+i FP+i

S[FP+i] = S[SP]; SP– –;

273

The instruction pop implements the unification with an anonymous

variable. It always succeeds :-)

pop

SP– –;

274

The instruction uref i implements the unification with an initialized variable:

uref i

FP+iFP+i y

x

θ = mgu (x, y)

θ y

SP– –;
unify (S[SP], deref (S[FP+i]));

It is only here that the run-time function unify() is called :-)

275

• The unification code performs a pre-order traversal over t.

• In case, execution hits at an unbound variable, we switch from checking to

building :-)

codeU f (t1, . . . , tn) ρ = ustruct f/n A // test

son 1

codeU t1 ρ

. . .

son n

codeU tn ρ

up B

A : check ivars(f (t1, . . . , tn)) ρ // occur-check

codeA f (t1, . . . , tn) ρ // building !!

bind // creation of bindings

B : . . .

276

The Building Block:

Before constructing the new (sub-) term t′ for the binding, we must exclude that

it contains the variable X′ on top of the stack !!!

This is the case iff the binding of no variable inside t′ contains (a reference to) X′.

==⇒ ivars(t′) returns the set of already initialized variables of t.

==⇒ The macro check {Y1, . . . , Yd} ρ generates the necessary tests on

the variables Y1, . . . , Yd :

check {Y1, . . . , Yd} ρ = check (ρ Y1)

check (ρ Y2)

...

check (ρ Yd)

277

The instruction check i checks whether the (unbound) variable on top of the

stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

R

FP

i

R

FP

i

check i

backtrack();
if (!check (S[SP], deref S[FP+i]))

278

The instruction bind terminates the building block. It binds the (unbound)

variable to the constructed term:

R R

bind

trail (S[SP-1]);
H[S[SP-1]] = (R, S[SP]);

SP = SP – 2;

279

The Pre-Order Traversal:

• First, we test whether the topmost reference is an unbound variable.

If so, we jump to the building block.

• Then we compare the root node with the constructor f/n.

• Then we recursively descend to the children.

• Then we pop the stack and proceed behind the unification code:

280

Once again the unification code for constructed terms:

codeU f (t1, . . . , tn) ρ = ustruct f/n A // test

son 1 // recursive descent

codeU t1 ρ

. . .

son n // recursive descent

codeU tn ρ

up B // ascent to father

A : check ivars(f (t1, . . . , tn)) ρ

codeA f (t1, . . . , tn) ρ

bind

B : . . .

281

The instruction ustruct i implements the test of the root node of a structure:

R R

S f/n S f/n

case (R,_) :
break;case (S, f/n):

switch (H[S[SP]]) {

PC = A; break;

}
default: backtrack();

ustruct f/n A

ustruct f/n A

PC PC A

... the argument reference is not yet popped :-)

282

The instruction son i pushes the (reference to the) i-th sub-term from the

structure pointed at from the topmost reference:

S f/nS f/n

son ii

S[SP+1] = deref (H[S[SP]+i]); SP++;

283

It is the instruction up B which finally pops the reference to the structure:

up B

PC BPC

SP– –; PC = B;

The continuation address B is the next address after the build-section.

284

Example:

For our example term f (g(X̄, Y), a, Z) and

ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3} we obtain:

ustruct f/3 A1 up B2 B2: son 2 putvar 2

son 1 uatom a putstruct g/2

ustruct g/2 A2 A2: check 1 son 3 putatom a

son 1 putref 1 uvar 3 putvar 3

uref 1 putvar 2 up B1 putstruct f/3

son 2 putstruct g/2 A1: check 1 bind

uvar 2 bind putref 1 B1: ...

Code size can grow quite considerably — for deep terms. In practice, though,

deep terms are “rare” :-)

285

31 Clauses

Clausal code must

• allocate stack space for locals;

• evaluate the body;

• free the stack frame (whenever possible :-)

Let r denote the clause: p(X1, . . . , Xk)← g1, . . . , gn.

Let {X1, . . . , Xm} denote the set of locals of r and ρ the address environment:

ρ Xi = i

Remark: The first k locals are always the formals :-)

286

Then we translate:

codeC r = pushenv m // allocates space for locals

codeG g1 ρ

...

codeG gn ρ

popenv

The instruction popenv restores FP and PC and tries to pop the current stack

frame.

It should succeed whenever program execution will never return to this stack

frame :-)

287

The instruction pushenv m sets the stack pointer:

FP FP

m
pushenv m

SP = FP + m;

288

Example:

Consider the clause r:

a(X, Y)← f(X̄, X1), a(X̄1, Ȳ)

Then codeC r yields:

pushenv 3 mark A A: mark B B: popenv

putref 1 putref 3

putvar 3 putref 2

call f/2 call a/2

289

32 Predicates

A predicate q/k is defined through a sequence of clauses rr ≡ r1 . . . r f .

The translation of q/k provides the translations of the individual clauses ri.

In particular, we have for f = 1 :

codeP rr = codeC r1

If q/k is defined through several clauses, the first alternative must be tried.

On failure, the next alternative must be tried

==⇒ backtracking :-)

290

32.1 Backtracking

• Whenever unifcation fails, we call the run-time function backtrack().

• The goal is to roll back the whole computation to the (dynamically :-) latest

goal where another clause can be chosen ==⇒ the last backtrack point.

• In order to undo intermediate variable bindings, we always have recorded

new bindings with the run-time function trail().

• The run-time function trail() stores variables in the data-structure

trail:

291

0

T

TP

TP === Trail Pointer

points to the topmost occupied Trail cell

292

The current stack frame where backtracking should return to is pointed at by the

extra register BP:

0 SP

FP

S

BP

293

A backtrack point is stack frame to which program execution possibly returns.

• We need the code address for trying the next alternative (negative

continuation address);

• We save the old values of the registers HP, TP and BP.

• Note: The new BP will receive the value of the current FP :-)

For this purpose, we use the corresponding four organizational cells:

FPold

HPold

TPold

BPold

posCont.

negCont.

FP 0

-4

-5

-1

-2

-3

294

For more comprehensible notation, we thus introduce the macros:

posCont ≡ S[FP]

FPold ≡ S[FP− 1]

HPold ≡ S[FP− 2]

TPold ≡ S[FP− 3]

BPold ≡ S[FP− 4]

negCont ≡ S[FP− 5]

for the corresponding addresses.

Remark:

Occurrence on the left === saving the register

Occurrence on the right === restoring the register

295

Calling the run-time function void backtrack() yields:

42
17

13

void backtrack() {

}

42
17

13

42
17

13

FP = BP; HP = HPold;
reset (TPold, TP);
TP = TPold; PC = negCont;

backtrack();

FP

HP
TP
BP
PC

HP
TP
BP
PC

FP

where the run-time function reset() undoes the bindings of variables

established since the backtrack point.

296

32.2 Resetting Variables

Idea:

• The variables which have been created since the last backtrack point can be

removed together with their bindings by popping the heap !!! :-)

• This works fine if younger variables always point to older objects.

• Bindings of old variables to younger objects, though, must be reset

manually :-(

• These are therefore recorded in the trail.

297

Functions void trail(ref u) and void reset (ref y, ref x) can

thus be implemented as:

void trail (ref u) {

if (u < S[BP-2]) {

TP = TP+1;

T[TP] = u;

}

}

void reset (ref x, ref y) {

for (ref u=y; x<u; u--)

H[T[u]] = (R,T[u]);

}

Here, S[BP-2] represents the heap pointer when creating the last backtrack

point.

298

32.3 Wrapping it Up

Assume that the predicate q/k is defined by the clauses r1, . . . , r f (f > 1).

We provide code for:

• setting up the backtrack point;

• successively trying the alternatives;

• deleting the backtrack point.

This means:

299

codeP rr = q/k : setbtp

try A1

...

try A f−1

delbtp

jump A f

A1 : codeC r1

...

A f : codeC r f

Note:

• We delete the backtrack point before the last alternative :-)

• We jump to the last alternative — never to return to the present frame :-))

300

Example:

s(X) ← t(X̄)

s(X) ← X̄ = a

The translation of the predicate s yields:

s/1: setbtp A: pushenv 1 B: pushenv 1

try A mark C putref 1

delbtp putref 1 uatom a

jump B call t/1 popenv

C: popenv

301

