Discussion:

- The translation of an equation $\tilde{X}=t$ is very simple :-)
- Often the constructed cells immediately become garbage

Idea 2:

- Push a reference to the run-time binding of the left-hand side onto the stack.
- Avoid to construct sub-terms of t whenever possible !
- Translate each node of t into an instruction which performs the unifcation with this node !!

Discussion:

- The translation of an equation $\tilde{X}=t$ is very simple :-)
- Often the constructed cells immediately become garbage

Idea 2:

- Push a reference to the run-time binding of the left-hand side onto the stack.
- Avoid to construct sub-terms of t whenever possible !
- Translate each node of t into an instruction which performs the unifcation with this node !!

$$
\begin{aligned}
\operatorname{code}_{G}(\tilde{X}=t) \rho= & \operatorname{put} \tilde{X} \rho \\
& \operatorname{code}_{u} t \rho
\end{aligned}
$$

Let us first consider the unifcation code for atoms and variables only:

$$
\begin{aligned}
\operatorname{code}_{U} a \rho & =\text { uatom a } \\
\operatorname{code}_{U} X \rho & =\operatorname{uvar}(\rho X) \\
\operatorname{code}_{U}-\rho & =\operatorname{pop} \\
\operatorname{code}_{U} \bar{X} \rho & =\operatorname{uref}(\rho X) \\
& \ldots
\end{aligned} \quad \text { // to be continued :-) }
$$

The instruction uatom a implements the unification with the atom a:

uatom a


```
v = S[SP]; SP--;
switch (H[v]) {
case (A, a): break;
case (R,_) : H[v] = (R, new (A, a));
    trail (v); break;
default: backtrack();
}
```

- The run-time function trail() records the a potential new binding.
- The run-time function backtrack() initiates backtracking.

The instruction uvar i implements the unification with an un-initialized variable:

$\mathrm{S}[\mathrm{FP}+\mathrm{i}]=\mathrm{S}[\mathrm{SP}] ; \mathrm{SP}--$;

The instruction pop implements the unification with an anonymous variable. It always succeeds :-)

The instruction uref i implements the unification with an initialized variable:

It is only here that the run-time function unify () is called :-)

- The unification code performs a pre-order traversal over t.
- In case, execution hits at an unbound variable, we switch from checking to building :-)

```
\mp@subsup{code}{U}{}f(\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{})\rho=\quad\mathrm{ ustruct f/n A // test}
    son 1
    codel}\mp@subsup{U}{U}{}\mp@subsup{t}{1}{}
    son n
    codelu}\mp@subsup{t}{n}{}
    up B
A: check ivars(f(t, ,.., th )) \rho // occur-check
        \mp@subsup{code}{A}{}f(\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{})\rho\quad// building !!
    bind
    // creation of bindings
B: ...
```


The Building Block:

Before constructing the new (sub-) term t^{\prime} for the binding, we must exclude that it contains the variable X^{\prime} on top of the stack !!!

This is the case iff the binding of no variable inside t^{\prime} contains (a reference to) X^{\prime}.
$\Longrightarrow \quad \operatorname{ivars}\left(t^{\prime}\right) \quad$ returns the set of already initialized variables of t.
\Longrightarrow The macro check $\left\{Y_{1}, \ldots, Y_{d}\right\} \rho$ generates the necessary tests on the variables Y_{1}, \ldots, Y_{d} :

$$
\begin{aligned}
\operatorname{check}\left\{Y_{1}, \ldots, Y_{d}\right\} \rho= & \operatorname{check}\left(\rho Y_{1}\right) \\
& \operatorname{check}\left(\rho Y_{2}\right) \\
& \ldots \\
& \operatorname{check}\left(\rho Y_{d}\right)
\end{aligned}
$$

The instruction check i checks whether the (unbound) variable on top of the stack occurs inside the term bound to variable i.

If so, unification fails and backtracking is caused:

check i

if (!check (S[SP], deref S[FP+i])) backtrack();

The instruction bind terminates the building block. It binds the (unbound) variable to the constructed term:

bind

$\mathrm{H}[\mathrm{S}[\mathrm{SP}-1]]=(\mathrm{R}, \mathrm{S}[\mathrm{SP}]) ;$
trail (S[SP-1]);
$\mathrm{SP}=\mathrm{SP}-2$;

The Pre-Order Traversal:

- First, we test whether the topmost reference is an unbound variable.

If so, we jump to the building block.

- Then we compare the root node with the constructor f / n.
- Then we recursively descend to the children.
- Then we pop the stack and proceed behind the unification code:

Once again the unification code for constructed terms:

```
\(\operatorname{code}_{U} f\left(t_{1}, \ldots, t_{n}\right) \rho=\quad\) ustruct \(\mathrm{f} / \mathrm{n} A \quad / /\) test
    son 1
    // recursive descent
    \(\operatorname{code}_{U} t_{1} \rho\)
son \(n\)
    // recursive descent
    \(\operatorname{code}_{U} t_{n} \rho\)
    up B
    // ascent to father
A: \(\quad \operatorname{check} \operatorname{ivars}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \rho\)
    \(\operatorname{code}_{A} f\left(t_{1}, \ldots, t_{n}\right) \rho\)
    bind
B: ...
```

The instruction ustruct i implements the test of the root node of a structure: ustruct $\mathrm{f} / \mathrm{n} \mathrm{A}$

$\begin{array}{ll}\text { switch }(\mathrm{H}[\mathrm{S}[\mathrm{SP}]])\{ \\ \text { case }(\mathrm{S}, \mathrm{f} / \mathrm{n}): & \text { break; } \\ \text { case }\left(\mathrm{R}, _\right): & \mathrm{PC}=\mathrm{A} ; \text { break; } \\ \text { default: } & \text { backtrack }() ; \\ \} & \end{array}$
... the argument reference is not yet popped :-)

The instruction son i pushes the (reference to the) i-th sub-term from the structure pointed at from the topmost reference:

It is the instruction up B which finally pops the reference to the structure:

$$
\mathrm{SP}--; \mathrm{PC}=\mathrm{B} ;
$$

The continuation address B is the next address after the build-section.

Example:

For our example term $\quad f(g(\bar{X}, Y), a, Z) \quad$ and $\rho=\{X \mapsto 1, Y \mapsto 2, Z \mapsto 3\} \quad$ we obtain:

ustruct f/3 A_{1}		up B_{2}	B_{2} :	son 2		putvar 2
son 1				uatom a		putstruct g/2
ustruct g/2 A_{2}	A_{2} :	check 1		son 3		putatom a
son 1		putref 1		uvar 3		putvar 3
uref 1		putvar 2		up B_{1}		putstruct f/3
son 2		putstruct g/2	A_{1} :	check 1		bind
uvar 2		bind		putref 1	B_{1} :	...

Code size can grow quite considerably - for deep terms. In practice, though, deep terms are "rare" :-)

31 Clauses

Clausal code must

- allocate stack space for locals;
- evaluate the body;
- free the stack frame (whenever possible :-)

Let r denote the clause: $\quad p\left(X_{1}, \ldots, X_{k}\right) \leftarrow g_{1}, \ldots, g_{n}$.
Let $\left\{X_{1}, \ldots, X_{m}\right\}$ denote the set of locals of r and ρ the address environment:

$$
\rho X_{i}=i
$$

Remark: The first k locals are always the formals :-)

Then we translate:

$$
\begin{aligned}
\operatorname{code}_{C} r= & \text { pushenv } \mathrm{m} \quad \text { // allocates space for locals } \\
& \operatorname{code}_{G} g_{1} \rho \\
& \ldots \\
& \operatorname{code}_{G} g_{n} \rho \\
& \text { popenv }
\end{aligned}
$$

The instruction popenv restores FP and PC and tries to pop the current stack frame.

It should succeed whenever program execution will never return to this stack frame :-)

The instruction pushenv m sets the stack pointer:

Example:

Consider the clause r :

$$
\mathrm{a}(X, Y) \leftarrow \mathrm{f}\left(\bar{X}, X_{1}\right), \mathrm{a}\left(\bar{X}_{1}, \bar{Y}\right)
$$

Then code r r yields:

pushenv 3	mark A	A:	mark B	B:	popenv
	putref 1		putref 3		
	putvar 3		putref 2		
	call f/2		call a/2		

32 Predicates

A predicate q / k is defined through a sequence of clauses $\quad r r \equiv r_{1} \ldots r_{f}$. The translation of q / k provides the translations of the individual clauses r_{i}. In particular, we have for $f=1$:

$$
\operatorname{code}_{P} r r=\operatorname{code}_{C} r_{1}
$$

If q / k is defined through several clauses, the first alternative must be tried.
On failure, the next alternative must be tried
\Longrightarrow backtracking :-)

32.1 Backtracking

- Whenever unifcation fails, we call the run-time function backtrack ().
- The goal is to roll back the whole computation to the (dynamically :-) latest goal where another clause can be chosen \Longrightarrow the last backtrack point.
- In order to undo intermediate variable bindings, we always have recorded new bindings with the run-time function trail().
- The run-time function trail() stores variables in the data-structure trail:

The current stack frame where backtracking should return to is pointed at by the extra register BP:

S

A backtrack point is stack frame to which program execution possibly returns.

- We need the code address for trying the next alternative (negative continuation address);
- We save the old values of the registers HP, TP and BP.
- Note: The new BP will receive the value of the current FP :-)

For this purpose, we use the corresponding four organizational cells:

$\mathrm{FP} \longrightarrow$| posCont.
 FPold
 HPold
 | -1 |
| :---: | :---: |
| TPold | -3 |
| BPold | -4 |
| negCont. | -5 |

For more comprehensible notation, we thus introduce the macros:

$$
\begin{aligned}
\text { posCont } & \equiv S[\mathrm{FP}] \\
\text { FPold } & \equiv S[\mathrm{FP}-1] \\
\text { HPold } & \equiv S[\mathrm{FP}-2] \\
\text { TPold } & \equiv S[\mathrm{FP}-3] \\
\text { BPold } & \equiv S[\mathrm{FP}-4] \\
\text { negCont } & \equiv S[\mathrm{FP}-5]
\end{aligned}
$$

for the corresponding addresses.

Remark:

Occurrence on the left $=$ saving the register
Occurrence on the right $=$ restoring the register

Calling the run-time function void backtrack () yields:

where the run-time function reset () undoes the bindings of variables established since the backtrack point.

32.2 Resetting Variables

Idea:

- The variables which have been created since the last backtrack point can be removed together with their bindings by popping the heap !!! :-)
- This works fine if younger variables always point to older objects.
- Bindings of old variables to younger objects, though, must be reset manually :-(
- These are therefore recorded in the trail.

Functions void trail(ref u) and void reset (ref y, ref x) can thus be implemented as:

```
void trail (ref u) {
    if (u < S[BP-2]) {
        TP = TP+1;
        T[TP] = u;
    }
}
```

Here, $S[B P-2]$ represents the heap pointer when creating the last backtrack point.

32.3 Wrapping it Up

Assume that the predicate q / k is defined by the clauses $r_{1}, \ldots, r_{f} \quad(f>1)$. We provide code for:

- setting up the backtrack point;
- successively trying the alternatives;
- deleting the backtrack point.

This means:

$$
\begin{aligned}
\operatorname{code}_{P} r r=\mathrm{q} / \mathrm{k}: & \text { setbtp } \\
& \operatorname{try} A_{1} \\
& \ldots \\
& \operatorname{try} A_{f-1} \\
& \text { delbtp } \\
& \text { jump } A_{f} \\
A_{1}: & \operatorname{code}_{C} r_{1} \\
& \ldots \\
A_{f}: & \operatorname{codec}_{C} r_{f}
\end{aligned}
$$

Note:

- We delete the backtrack point before the last alternative :-)
- We jump to the last alternative - never to return to the present frame :-))

Example:

$$
\begin{aligned}
\mathrm{s}(X) & \leftarrow \mathrm{t}(\bar{X}) \\
\mathrm{s}(X) & \leftarrow \bar{X}=a
\end{aligned}
$$

The translation of the predicate s yields:

s/1:	setbtp	A:	pushenv 1	B:	pushenv 1
try A		mark C		putref 1	
	delbtp		putref 1		uatom a
	jump B		call t/1		popenv
		$\mathrm{C}:$	popenv		

