
The instruction setbtp saves the registers HP, TP, BP:

42
17

42
17

42
17

setbtp

HP
TP
BP

HP
TP
BP

FPFP

HPold = HP;
TPold = TP;
BPold = BP;
BP = FP;

302

The instruction try A tries the alternative at address A and updates the

negative continuation address to the current PC:

29

A29

try A

HP
TP
BP

HP
TP
BP

FPFP

negForts = PC;
PC = A;

PC PC

303

The instruction delbtp restores the old backtrack pointer:

delbtp

HP
TP
BP

HP
TP
BP

FPFP

BP = BPold;

304

32.4 Popping of Stack Frames

Recall the translation scheme for clauses:

codeC r = pushenv m

codeG g1 ρ

...

codeG gn ρ

popenv

The present stack frame can be popped ...

• if the applied clause was the last (or only); and

• if all goals in the body are definitely finished.

==⇒ the backtrack point is older :-)

==⇒ FP > BP

305

The instruction popenv restores the registers FP and PC and possibly pops

the stack frame:

42

42

popenv

BP

PC

FP

BP

PC

FP

FP = FPold;

if (FP > BP) SP = FP - 6;
PC = posCont;

Warning: popenv may fail to de-allocate the frame !!!

306

42 42

42

popenv

BP

PC

FP

BP

PC

FP

FP = FPold;

if (FP > BP) SP = FP - 6;
PC = posCont;

If popping the stack frame fails, new data are allocated on top of the stack. When

returning to the frame, the locals still can be accessed through the FP :-))

307

33 Queries and Programs

The translation of a program: p ≡ rr1 . . . rrh?g

consists of:

• an instruction no for failure;

• code for evaluating the query g;

• code for the predicate definitions rri.

Preceding query evaluation:

==⇒ initialization of registers

==⇒ allocation of space for the globals

Succeeding query evaluation:

==⇒ returning the values of globals

308

code p = init A

pushenv d

codeG g ρ

halt d

A: no

codeP rr1

...

codeP rrh

where f ree(g) = {X1, . . . , Xd} and ρ is given by ρ Xi = i .

The instruction halt d ...

• ... terminates the program execution;

• ... returns the bindings of the d globals;

• ... causes backtracking — if demanded by the user :-)

309

The instruction init A is defined by:

0
−1

−1
0

−1

0
−1

−1

−1

A

init A
FP
HP
TP
BP

FP
HP
TP
BP

BP = FP;

BP = FP = SP = 5;

S[1] = S[2] = -1;
S[3] = 0;

S[0] = A;

At address “A” for a failing goal we have placed the instruction no for

printing no to the standard output and halt :-)

310

The Final Example:

t(X)← X̄ = b q(X)← s(X̄) s(X)← X̄ = a

p← q(X), t(X̄) s(X)← t(X̄) ? p

The translation yields:

init N popenv q/1: pushenv 1 E: pushenv 1

pushenv 0 p/0: pushenv 1 mark D mark G

mark A makr B putref 1 putref 1

call p/0 putvar 1 call s/1 call t/1

A: halt 0 call q/1 D: popenv G: popenv

N: no B: mark C s/1: setbtp F: pushenv 1

t/1: pushenv 1 putref 1 try E putref 1

putref 1 call t/1 delbtp uatom a

uatom b C: popenv jump F popenv

311

34 Last Call Optimization

Consider the app predicate from the beginnning:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

We observe:

• The recursive call occurs in the last goal of the clause.

• Such a goal is called last call.

==⇒ we try to evaluate it in the current stack frame !!!

==⇒ after (successful) completion, we will not return to

the current caller !!!

312

Consider a clause r: p(X1, . . . , Xk)← g1, . . . , gn

with m locals where gn ≡ q(t1, . . . , th). The interplay between codeC and

codeG:

codeC r = pushenv m

codeG g1 ρ

...

codeG gn−1 ρ

mark B

codeA t1 ρ

. . .

codeA th ρ

call q/h

B : popenv

Replacement: mark B ==⇒ lastmark

call q/h; popenv ==⇒ lastcall q/h m

313

Consider a clause r: p(X1, . . . , Xk)← g1, . . . , gn

with m locals where gn ≡ q(t1, . . . , th). The interplay between codeC and

codeG:

codeC r = pushenv m

codeG g1 ρ

...

codeG gn−1 ρ

lastmark

codeA t1 ρ

. . .

codeA th ρ

lastcall q/h m

B : popenv

Replacement: mark B ==⇒ lastmark

call q/h; popenv ==⇒ lastcall q/h m

314

If the current clause is not last or the g1 , . . . , gn−1 have created backtrack points,

then FP ≤ BP :-)

Then lastmark creates a new frame but stores a reference to the predecessor:

42

42

42

lastmark

FPFP

BP BP

}

SP = SP + 6;
S[SP] = posCont; S[SP-1] = FPold;

if (FP ≤ BP) {

If FP > BP then lastmark does nothing :-)

315

If FP ≤ BP, then lastcall q/h m behaves like a normal call q/h.

Otherwise, the current stack frame is re-used. This means that:

• the cells S[FP+1], S[FP+2], . . ., S[FP+h] receive the new values and

• q/h can be jumped to :-)

lastcall q/h m = if (FP ≤ BP) call q/h;

else {

move m h;

jump q/h;

}

The difference between the old and the new addresses of the parameters m

just equals the number of the local variables of the current clause :-))

316

args.

q/h

locals
m old

lastcall (q/h,m)

FP

BP

FP

BP

h

PC PC

317

Example:

Consider the clause:

a(X, Y)← f(X̄, X1), a(X̄1, Ȳ)

The last-call optimization for codeC r yields:

mark A A: lastmark

pushenv 3 putref 1 putref 3

putvar 3 putref 2

call f/2 lastcall a/2 3

Note:

If the clause is last and the last literal is the only one, we can skip lastmark and

can replace lastcall q/h m with the sequence move m n; jump p/n :-))

318

Example:

Consider the clause:

a(X, Y)← f(X̄, X1), a(X̄1, Ȳ)

The last-call optimization for codeC r yields:

mark A A: lastmark

pushenv 3 putref 1 putref 3

putvar 3 putref 2

call f/2 lastcall a/2 3

Note:

If the clause is last and the last literal is the only one, we can skip lastmark and

can replace lastcall q/h m with the sequence move m n; jump p/n :-))

319

Example:

Consider the last clause of the app predicate:

app(X, Y, Z) ← X̄ = [H|X′], Z̄ = [H̄|Z′], app(X̄′, Ȳ, Z̄′)

Here, the last call is the only one :-) Consequently, we obtain:

A: pushenv 6 uref 4 bind

putref 1 B: putvar 4 son 2 E: putref 5

ustruct [|]/2 B putvar 5 uvar 6 putref 2

son 1 putstruct [|]/2 up E putref 6

uvar 4 bind D: check 4 move 6 3

son 2 C: putref 3 putref 4 jump app/3

uvar 5 ustruct [|]/2 D putvar 6

up C son 1 putstruct [|]/2

320

35 Trimming of Stack Frames

Idea:

• Order local variables according to their life times;

• Pop the dead variables — if possible :-}

Example:

Consider the clause:

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

After the query p2(X̄1, X2) , variable X1 is dead.

After the query p3(X̄2, X3) , variable X2 is dead :-)

321

35 Trimming of Stack Frames

Idea:

• Order local variables according to their life times;

• Pop the dead variables — if possible :-}

Example:

Consider the clause:

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

After the query p2(X̄1, X2) , variable X1 is dead.

After the query p3(X̄2, X3) , variable X2 is dead :-)

322

35 Trimming of Stack Frames

Idea:

• Order local variables according to their life times;

• Pop the dead variables — if possible :-}

Example:

Consider the clause:

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

After the query p2(X̄1, X2) , variable X1 is dead.

After the query p3(X̄2, X3) , variable X2 is dead :-)

323

After every non-last goal with dead variables, we insert the instruction trim :

FP FP

m

trim m

SP = FP + m;
if (FP ≥ BP)

The dead locals can only be popped if no new backtrack point has been

allocated :-)

324

After every non-last goal with dead variables, we insert the instruction trim :

FP FP

m

trim m

SP = FP + m;
if (FP ≥ BP)

The dead locals can only be popped if no new backtrack point has been

allocated :-)

325

Example (continued):

a(X, Z)← p1(X̄, X1), p2(X̄1, X2), p3(X̄2, X3), p4(X̄3, Z̄)

Ordering of the variables:

ρ = {X 7→ 1, Z 7→ 2, X3 7→ 3, X2 7→ 4, X1 7→ 5}

The resulting code:

pushenv 5 A: mark B mark C lastmark

mark A putref 5 putref 4 putref 3

putref 1 putvar 4 putvar 3 putref 2

putvar 5 call p2/2 call p3/2 lastcall p4/2 3

call p1/2 B: trim 4 C: trim 3

326

36 Clause Indexing

Observation:

Often, predicates are implemented by case distinction on the first argument.

==⇒ Inspecting the first argument, many alternatives can be excluded :-)

==⇒ Failure is earlier detected :-)

==⇒ Backtrack points are earlier removed. :-))

==⇒ Stack frames are earlier popped :-)))

327

Example: The app-predicate:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

• If the root constructor is [], only the first clause is applicable.

• If the root constructor is [|], only the second clause is applicable.

• Every other root constructor should fail !!

• Only if the first argument equals an unbound variable, both alternatives

must be tried ;-)

328

Idea:

• Introduce separate try chains for every possible constructor.

• Inspect the root node of the first argument.

• Depending on the result, perform an indexed jump to the appropriate try

chain.

Assume that the predicate p/k is defined by the sequence rr of clauses r1 . . . rm.

Let tchains rr denote the sequence of try chains as built up for the root

constructors occurring in unifications X1 = t.

329

Example:

Consider again the app-predicate, and assume that the code for the two clauses

start at addresses A1 and A2, respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump A1 // atom []

try A1

delbtp CONS: jump A2 // constructor [|]

jump A2

ELSE: fail // default

The new instruction fail takes care of any constructor besides [] and [|] ...

fail = backtrack()

It directly triggers backtracking :-)

330

Example:

Consider again the app-predicate, and assume that the code for the two clauses

start at addresses A1 and A2, respectively.

Then we obtain the following four try chains:

VAR: setbtp // variables NIL: jump A1 // atom []

try A1

delbtp CONS: jump A2 // constructor [|]

jump A2

ELSE: fail // default

The new instruction fail takes care of any constructor besides [] and [|] ...

fail = backtrack()

It directly triggers backtracking :-)

331

Then we generate for a predicate p/k:

codeP rr = putref 1

getNode // extracts the root label

index p/k // jumps to the try block

tchains rr

A1 : codeC r1

...

Am : codeC rm

332

The instruction getNode returns “R” if the pointer on top of the stack points

to an unbound variable. Otherwise, it returns the content of the heap object:

S f/n f/n

R

S[SP] = f/n; break;
switch (H[S[SP]]) {

S[SP] = a; break;
S[SP] = R;

case (S, f/n):

}

case (A,a):
case (R,_) :

R

getNode

getNode

333

The instruction index p/k performs an indexed jump to the appropriate try

chain:

a

map (p/k,a)

index p/k

PC = map (p/k,S[SP]);
SP– –;

PC

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)

It typically is defined through some hash table :-)

334

The instruction index p/k performs an indexed jump to the appropriate try

chain:

a

map (p/k,a)

index p/k

PC = map (p/k,S[SP]);
SP– –;

PC

The function map() returns, for a given predicate and node content, the start

address of the appropriate try chain :-)

It typically is defined through some hash table :-))

335

