
37 Extension: The Cut Operator

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the

left-hand side ...

336



The Basic Idea:

• We restore the oldBP from our current stack frame;

• We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.
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Example:

Consider our example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

We obtain:

setbtp A: pushenv 2 C: prune lastmark B: pushenv 2

try A mark C pushenv 2 putref 1 putref 2

delbtp putref 1 putref 2 putref 2

jump B call p/1 lastcall q1/2 2 move 2 2

jump q2/2
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Example:

Consider our example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

In fact, an optimized translation even yields here:

setbtp A: pushenv 2 C: prune putref 1 B: pushenv 2

try A mark C pushenv 2 putref 2 putref 1

delbtp putref 1 move 2 2 putref 2

jump B call p/1 jump q1/2 move 2 2

jump q2/2
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The new instruction prune simply restores the backtrack pointer:

prune

HP
TP
BP

HP
TP
BP

FPFP

BP = BPold;
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Problem:

If a clause is single, then (at least so far ;-) we have not stored the old BP inside

the stack frame :-(

==⇒

For the cut to work also with single-clause predicates or try chains of length 1,

we insert an extra instruction setcut before the clausal code (or the jump):
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The instruction setcut just stores the current value of BP:

setcut

HP
TP
BP

HP
TP
BP

FPFP

BPold = BP;
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The Final Example: Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X) ← p(X), !, fail

notP(X) ←

where the goal fail never succeeds. Then we obtain for notP :

setbtp A: pushenv 1 C: prune B: pushenv 1

try A mark C pushenv 1 popenv

delbtp putref 1 fail

jump B call p/1 popenv
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38 Garbage Collection

• Both during execution of a MaMa- as well as a WiM-programs, it may

happen that some objects can no longer be reached through references.

• Obviously, they cannot affect the further program execution. Therefore,

these objects are called garbage.

• Their storage space should be freed and reused for the creation of other

objects.

Warning:

The WiM provides some kind of heap de-allocation. This, however, only frees

the storage of failed alternatives !!!
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Operation of a stop-and-copy-Collector:

• Division of the heap into two parts, the to-space and the from-space —

which, after each collection flip their roles.

• Allocation with new in the current from-space.

• In case of memory exhaustion, call of the collector.

The Phases of the Collection:

1. Marking of all reachable objects in the from-space.

2. Copying of all marked objects into the to-space.

3. Correction of references.

4. Exchange of from-space and to-space.
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(1) Mark: Detection of live objects:

• all references in the stack point to live objects;

• every reference of a live object points to a live object.

==⇒

Graph Reachability
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(2) Copy: Copying of all live objects from the current from-space into the

current to-space. This means for every detected object:

• Copying the object;

• Storing a forward reference to the new place at the old place :-)

==⇒

all references of the copied objects point to the forward references in the

from-space.
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(3) Traversing of the to-space in order to correct the references.
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(4) Exchange of to-space and from-space.
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Warning:

The garbage collection of the WiM must harmonize with backtracking.

This means:

• The relative position of heap objects must not change during copying :-!!

• The heap references in the trail must be updated to the new positions.

• If heap objects are collected which have been created before the last

backtrack point, then also the heap pointers in the stack must be updated.
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Threads
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39 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:

• generating new threads: create();

• terminating a thread: exit();

• waiting for termination of a thread: join();

• mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the abstract machine

(what else? :-)
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40 Storage Organization

All threads share the same common code store and heap:

0 1 PC

C

H

NP0 1 2

367



... similar to the CMa, we have:

C = Code Store – contains the CMa program;

every cell contains one instruction;

PC = Program-Counter – points to the next executable instruction;

H = Heap –

every cell may contain a base value or an address;

the globals are stored at the bottom;

NP = New-Pointer – points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment.

The function malloc() then fails whenever NP exceeds the topmost border.
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Every thread on the other hand needs its own stack:

SP

FP

S

SSetH
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In constrast to the CMa, we have:

SSet = Set of Stacks – contains the stacks of the threads;

every cell may contain a base value of an address;

S = common address space for heap and the stacks;

SP = Stack-Pointer – points to the current topmost ocupied stack cell;

FP = Frame-Pointer – points to the current stack frame.

Warning:

• If all references pointed into the heap, we could use separate address spaces

for each stack.

Besides SP and FP, we would have to record the number of the current stack

:-)

• In the case of C, though, we must assume that all storage reagions live

within the same address space — only at different locations :-)

SP Und FP then uniquely identify storage locations.

• For simplicity, we omit the extreme-pointer EP.
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41 The Ready-Queue

Idea:

• Every thread has a unique number tid.

• A table TTab allows to determine for every tid the corresponding thread.

• At every point in time, there can be several executable threads, but only one

running thread (per processor :-)

• the tid of the currently running thread is cept in the register CT (Current

Thread).

• The function: tid self () returns the tid of the current thread.

Accordingly:

codeR self () ρ = self
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... where the instruction self pushes the content of the register CT onto

the (current) stack:

CTCT

self

11 11

11

S[SP++] = CT;
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• The remaining executable threads (more precisely, their tid’s) are

maintained in the queue RQ (Ready-Queue).

• For queues, we need the functions:

void enqueue (queue q, tid t),
tid dequeue (queue q)

which insert a tid into a queue and return the first one, respectively ...
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CT RQ
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enqueue(RQ, 13)

TTab
CT

13

RQ
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CT
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TTab
CT RQ

CT = dequeue(RQ);
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TTab
CT RQ
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If a call to dequeue () failed, it returns a value < 0 :-)

The thread table must contain for every thread, all information which is needed

for its execution. In particular it consists of the registers PC, SP und FP:

SP

PC

FP0

1

2

Interrupting the current thread therefore requires to save these registers:

void save () {

TTab[CT][0] = FP;

TTab[CT][1] = PC;

TTab[CT][2] = SP;

}
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Analogously, we restore these registers by calling the function:

void restore () {

FP = TTab[CT][0];

PC = TTab[CT][1];

SP = TTab[CT][2];

}

Thus, we can realize an instruction yield which causes a thread-switch:

tid ct = dequeue ( RQ );
if (ct ≥ 0) {

save (); enqueue ( RQ, CT );
CT = ct;

restore ();
}

Only if the ready-queue is non-empty, the current thread is replaced :-)
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42 Switching between Threads

Problem:

We want to give each executable thread a fair chance to be completed.

==⇒

• Every thread must former or later be scheduled for running.

• Every thread must former or later be interrupted.

Possible Strategies:

• Thread switch only at explicit calls to a function yield() :-(

• Thread switch after every instruction ==⇒ too expensive :-(

• Thread switch after a fixed number of steps ==⇒ we must install a

counter and execute yield at dynamically chosen points :-(
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We insert thread switches at selected program points ...

• at the beginning of function bodies;

• before every jump whose target does not exceed the current PC ...

==⇒ rare :-))

The modified scheme for loops s ≡ while (e) s then yields:

code s ρ = A : codeR e ρ

jumpz B

code s ρ

yield

jump A

B : . . .
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Note:

• If-then-else-Statements do not necessarily contain thread switches.

• do-while-Loops require a thread switch at the end of the condition.

• Every loop should contain (at least) one thread switch :-)

• Loop-Unroling reduces the number of thread switches.

• At the translation of switch-statements, we created a jump table behind the

code for the alternatives. Nonetheless, we can avoid thread switches here.

• At freely programmed uses of jumpi as well as jumpz we should

also insert thread switches before the jump (or at the jump target).

• If we want to reduce the number of executed thread switches even further,

we could switch threads, e.g., only at every 100th call of yield ...
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43 Generating New Threads

We assume that the expression: s ≡ create (e0, e1) first evaluates the

expressions ei to the values f , a and then creates a new thread which computes

f (a) .

If thread creation fails, s returns the value −1.

Otherwise, s returns the new thread’s tid.

Tasks of the Generated Code:

• Evaluation of the ei;

• Allocation of a new run-time stack together with a stack frame for the

evaluation of f (a);

• Generation of a new tid;

• Allocation of a new entry in the TTab;

• Insertion of the new tid into the ready-queue.
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The translation of s then is quite simple:

codeR s ρ = codeR e0 ρ

codeR e1 ρ

initStack

initThread

where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function

newStack() which returns a pointer onto the first element of a new stack:
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SP SP

newStack()

If the creation of a new stack fails, the value 0 is returned.
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SP SP
f

−1initStack

newStack();
if (S[SP]) {

S[S[SP]+1] = -1;

S[S[SP]+2] = f;

S[S[SP]+3] = S[SP-1];

S[SP-1] = S[SP]; SP--

}

else S[SP = SP - 2] = -1;
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Note:

• The continuation address f points to the (fixed) code for the termination

of threads.

• Inside the stack frame, we no longer allocate space for the EP ==⇒ the

return value has relative address −2.

• The bottom stack frame can be identified through FPold = -1 :-)

In order to create new thread ids, we introduce a new register TC (Thread

Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.
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5TC
37

initThread

6

37

SP

6TC
6
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if (S[SP] ≥ 0) {

tid = ++TCount;

TTab[tid][0] = S[SP]-1;

TTab[tid][1] = S[SP-1];

TTab[tid][2] = S[SP];

S[--SP] = tid;

enqueue( RQ, tid );

}
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44 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways

to terminate a thread:

1. The initial function call has terminated. Then the return value is the return

value of the call.

2. The thread executes the statement exit (e); Then the return value equals

the value of e.

Warning:

• We want to return the return value in the bottom stack cell.

• exit may occur arbitrarily deeply nested inside a recursion. Then we

de-allocate all stack frames ...

• ... and jump to the terminal treatment of threads at address f .
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Therefore, we translate:

code exit (e); ρ = codeR e ρ

exit

term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

while (FP 6= –1) {

SP = FP–2;

FP = S[FP–1];

}

S[SP] = result;
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FP FP −1

exit−1

17

17

393



The instruction next activates the next executable thread:

in contrast to yield the current thread is not inserted into RQ .

SP
PC
FP

1313

SP
PC
FP

4

next

CT

RQ

13CT 13

RQ

4

4

39
4
21

39
4
21

39
4
21

5
7
2

5

2
7
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Ist die Schlange RQ leer, wird zusätzlich If the queue RQ is empty, we

additionally terminate the whole program:

if (0 > ct = dequeue( RQ )) halt;

else {

save ();
CT = ct;

restore ();
}
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