
37 Extension: The Cut Operator

Realistic Prolog additionally provides an operator “!” (cut) which explicitly

allows to prune the search space of backtracking.

Example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the

left-hand side ...

336

The Basic Idea:

• We restore the oldBP from our current stack frame;

• We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune

pushenv m

where m is the number of (still used) local variables of the clause.

337

Example:

Consider our example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

We obtain:

setbtp A: pushenv 2 C: prune lastmark B: pushenv 2

try A mark C pushenv 2 putref 1 putref 2

delbtp putref 1 putref 2 putref 2

jump B call p/1 lastcall q1/2 2 move 2 2

jump q2/2

338

Example:

Consider our example:

branch(X, Y) ← p(X), !, q1(X, Y)

branch(X, Y) ← q2(X, Y)

In fact, an optimized translation even yields here:

setbtp A: pushenv 2 C: prune putref 1 B: pushenv 2

try A mark C pushenv 2 putref 2 putref 1

delbtp putref 1 move 2 2 putref 2

jump B call p/1 jump q1/2 move 2 2

jump q2/2

339

The new instruction prune simply restores the backtrack pointer:

prune

HP
TP
BP

HP
TP
BP

FPFP

BP = BPold;

340

Problem:

If a clause is single, then (at least so far ;-) we have not stored the old BP inside

the stack frame :-(

==⇒

For the cut to work also with single-clause predicates or try chains of length 1,

we insert an extra instruction setcut before the clausal code (or the jump):

341

The instruction setcut just stores the current value of BP:

setcut

HP
TP
BP

HP
TP
BP

FPFP

BPold = BP;

342

The Final Example: Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa :-)

notP(X) ← p(X), !, fail

notP(X) ←

where the goal fail never succeeds. Then we obtain for notP :

setbtp A: pushenv 1 C: prune B: pushenv 1

try A mark C pushenv 1 popenv

delbtp putref 1 fail

jump B call p/1 popenv

343

38 Garbage Collection

• Both during execution of a MaMa- as well as a WiM-programs, it may

happen that some objects can no longer be reached through references.

• Obviously, they cannot affect the further program execution. Therefore,

these objects are called garbage.

• Their storage space should be freed and reused for the creation of other

objects.

Warning:

The WiM provides some kind of heap de-allocation. This, however, only frees

the storage of failed alternatives !!!

344

Operation of a stop-and-copy-Collector:

• Division of the heap into two parts, the to-space and the from-space —

which, after each collection flip their roles.

• Allocation with new in the current from-space.

• In case of memory exhaustion, call of the collector.

The Phases of the Collection:

1. Marking of all reachable objects in the from-space.

2. Copying of all marked objects into the to-space.

3. Correction of references.

4. Exchange of from-space and to-space.

345

(1) Mark: Detection of live objects:

• all references in the stack point to live objects;

• every reference of a live object points to a live object.

==⇒

Graph Reachability

346

a

b

c

d

347

b

c

d

a

348

(2) Copy: Copying of all live objects from the current from-space into the

current to-space. This means for every detected object:

• Copying the object;

• Storing a forward reference to the new place at the old place :-)

==⇒

all references of the copied objects point to the forward references in the

from-space.

349

a

b

c

d

350

a

b

c

d

351

d a

c

b

352

a

c

d

b

353

(3) Traversing of the to-space in order to correct the references.

a

c

d

b

354

a

c

d

b

355

a

c

d

b

356

a

c

d

357

(4) Exchange of to-space and from-space.

a

c

d

358

a

c

d

359

Warning:

The garbage collection of the WiM must harmonize with backtracking.

This means:

• The relative position of heap objects must not change during copying :-!!

• The heap references in the trail must be updated to the new positions.

• If heap objects are collected which have been created before the last

backtrack point, then also the heap pointers in the stack must be updated.

360

a

b

c

d

361

a

b

c

d

362

d

c

ab

363

d

c

a

364

Threads

365

39 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:

• generating new threads: create();

• terminating a thread: exit();

• waiting for termination of a thread: join();

• mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the abstract machine

(what else? :-)

366

40 Storage Organization

All threads share the same common code store and heap:

0 1 PC

C

H

NP0 1 2

367

... similar to the CMa, we have:

C = Code Store – contains the CMa program;

every cell contains one instruction;

PC = Program-Counter – points to the next executable instruction;

H = Heap –

every cell may contain a base value or an address;

the globals are stored at the bottom;

NP = New-Pointer – points to the first free cell.

For a simplification, we assume that the heap is stored in a separate segment.

The function malloc() then fails whenever NP exceeds the topmost border.

368

Every thread on the other hand needs its own stack:

SP

FP

S

SSetH

369

In constrast to the CMa, we have:

SSet = Set of Stacks – contains the stacks of the threads;

every cell may contain a base value of an address;

S = common address space for heap and the stacks;

SP = Stack-Pointer – points to the current topmost ocupied stack cell;

FP = Frame-Pointer – points to the current stack frame.

Warning:

• If all references pointed into the heap, we could use separate address spaces

for each stack.

Besides SP and FP, we would have to record the number of the current stack

:-)

• In the case of C, though, we must assume that all storage reagions live

within the same address space — only at different locations :-)

SP Und FP then uniquely identify storage locations.

• For simplicity, we omit the extreme-pointer EP.

370

41 The Ready-Queue

Idea:

• Every thread has a unique number tid.

• A table TTab allows to determine for every tid the corresponding thread.

• At every point in time, there can be several executable threads, but only one

running thread (per processor :-)

• the tid of the currently running thread is cept in the register CT (Current

Thread).

• The function: tid self () returns the tid of the current thread.

Accordingly:

codeR self () ρ = self

371

... where the instruction self pushes the content of the register CT onto

the (current) stack:

CTCT

self

11 11

11

S[SP++] = CT;

372

• The remaining executable threads (more precisely, their tid’s) are

maintained in the queue RQ (Ready-Queue).

• For queues, we need the functions:

void enqueue (queue q, tid t),
tid dequeue (queue q)

which insert a tid into a queue and return the first one, respectively ...

373

TTab
CT RQ

374

enqueue(RQ, 13)

TTab
CT

13

RQ

375

TTab
CT

13

RQ

376

TTab
CT RQ

CT = dequeue(RQ);

377

TTab
CT RQ

378

If a call to dequeue () failed, it returns a value < 0 :-)

The thread table must contain for every thread, all information which is needed

for its execution. In particular it consists of the registers PC, SP und FP:

SP

PC

FP0

1

2

Interrupting the current thread therefore requires to save these registers:

void save () {

TTab[CT][0] = FP;

TTab[CT][1] = PC;

TTab[CT][2] = SP;

}

379

Analogously, we restore these registers by calling the function:

void restore () {

FP = TTab[CT][0];

PC = TTab[CT][1];

SP = TTab[CT][2];

}

Thus, we can realize an instruction yield which causes a thread-switch:

tid ct = dequeue (RQ);
if (ct ≥ 0) {

save (); enqueue (RQ, CT);
CT = ct;

restore ();
}

Only if the ready-queue is non-empty, the current thread is replaced :-)

380

42 Switching between Threads

Problem:

We want to give each executable thread a fair chance to be completed.

==⇒

• Every thread must former or later be scheduled for running.

• Every thread must former or later be interrupted.

Possible Strategies:

• Thread switch only at explicit calls to a function yield() :-(

• Thread switch after every instruction ==⇒ too expensive :-(

• Thread switch after a fixed number of steps ==⇒ we must install a

counter and execute yield at dynamically chosen points :-(

381

We insert thread switches at selected program points ...

• at the beginning of function bodies;

• before every jump whose target does not exceed the current PC ...

==⇒ rare :-))

The modified scheme for loops s ≡ while (e) s then yields:

code s ρ = A : codeR e ρ

jumpz B

code s ρ

yield

jump A

B : . . .

382

Note:

• If-then-else-Statements do not necessarily contain thread switches.

• do-while-Loops require a thread switch at the end of the condition.

• Every loop should contain (at least) one thread switch :-)

• Loop-Unroling reduces the number of thread switches.

• At the translation of switch-statements, we created a jump table behind the

code for the alternatives. Nonetheless, we can avoid thread switches here.

• At freely programmed uses of jumpi as well as jumpz we should

also insert thread switches before the jump (or at the jump target).

• If we want to reduce the number of executed thread switches even further,

we could switch threads, e.g., only at every 100th call of yield ...

383

43 Generating New Threads

We assume that the expression: s ≡ create (e0, e1) first evaluates the

expressions ei to the values f , a and then creates a new thread which computes

f (a) .

If thread creation fails, s returns the value −1.

Otherwise, s returns the new thread’s tid.

Tasks of the Generated Code:

• Evaluation of the ei;

• Allocation of a new run-time stack together with a stack frame for the

evaluation of f (a);

• Generation of a new tid;

• Allocation of a new entry in the TTab;

• Insertion of the new tid into the ready-queue.

384

The translation of s then is quite simple:

codeR s ρ = codeR e0 ρ

codeR e1 ρ

initStack

initThread

where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function

newStack() which returns a pointer onto the first element of a new stack:

385

SP SP

newStack()

If the creation of a new stack fails, the value 0 is returned.

386

SP SP
f

−1initStack

newStack();
if (S[SP]) {

S[S[SP]+1] = -1;

S[S[SP]+2] = f;

S[S[SP]+3] = S[SP-1];

S[SP-1] = S[SP]; SP--

}

else S[SP = SP - 2] = -1;

387

Note:

• The continuation address f points to the (fixed) code for the termination

of threads.

• Inside the stack frame, we no longer allocate space for the EP ==⇒ the

return value has relative address −2.

• The bottom stack frame can be identified through FPold = -1 :-)

In order to create new thread ids, we introduce a new register TC (Thread

Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.

388

SP

5TC
37

initThread

6

37

SP

6TC
6

389

if (S[SP] ≥ 0) {

tid = ++TCount;

TTab[tid][0] = S[SP]-1;

TTab[tid][1] = S[SP-1];

TTab[tid][2] = S[SP];

S[--SP] = tid;

enqueue(RQ, tid);

}

390

44 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways

to terminate a thread:

1. The initial function call has terminated. Then the return value is the return

value of the call.

2. The thread executes the statement exit (e); Then the return value equals

the value of e.

Warning:

• We want to return the return value in the bottom stack cell.

• exit may occur arbitrarily deeply nested inside a recursion. Then we

de-allocate all stack frames ...

• ... and jump to the terminal treatment of threads at address f .

391

Therefore, we translate:

code exit (e); ρ = codeR e ρ

exit

term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

while (FP 6= –1) {

SP = FP–2;

FP = S[FP–1];

}

S[SP] = result;

392

FP FP −1

exit−1

17

17

393

The instruction next activates the next executable thread:

in contrast to yield the current thread is not inserted into RQ .

SP
PC
FP

1313

SP
PC
FP

4

next

CT

RQ

13CT 13

RQ

4

4

39
4
21

39
4
21

39
4
21

5
7
2

5

2
7

394

Ist die Schlange RQ leer, wird zusätzlich If the queue RQ is empty, we

additionally terminate the whole program:

if (0 > ct = dequeue(RQ)) halt;

else {

save ();
CT = ct;

restore ();
}

395

