The Translation of Functional Programming Languages

11 The language PuF

We only regard a mini-language PuF ("Pure Functions").
We do not treat, as yet:

- Side effects;
- Data structures.

A Program is an expression e of the form:

$$
\begin{aligned}
e::= & b|x|\left(\square_{1} e\right) \mid\left(e_{1} \square_{2} e_{2}\right) \\
& \mid\left(\text { if } e_{0} \text { then } e_{1} \text { else } e_{2}\right) \\
& \mid\left(e^{\prime} e_{0} \ldots e_{k-1}\right) \\
& \mid\left(\text { fn } x_{0}, \ldots, x_{k-1} \Rightarrow e\right) \\
& \left(\text { let } x_{1}=e_{1} ; \ldots ; x_{n}=e_{n} \text { in } e_{0}\right) \\
& \left(\text { letrec } x_{1}=e_{1} ; \ldots ; x_{n}=e_{n} \text { in } e_{0}\right)
\end{aligned}
$$

An expression is therefore

- a basic value, a variable, the application of an operator, or
- a function-application, a function-abstraction, or
- a let-expression, i.e. an expression with locally defined variables, or
- a letrec-expression, i.e. an expression with simultaneously defined local variables.

For simplicity, we only allow int and bool as basic types.

Example:

The following well-known function computes the factorial of a natural number:

$$
\begin{aligned}
& \text { letrec fac }=\quad \text { fn } x \Rightarrow \text { if } x \leq 1 \text { then } 1 \\
& \text { else } x \cdot \text { fac }(x-1)
\end{aligned}
$$

As usual, we only use the minimal amount of parentheses.

There are two Semantics:
CBV: Arguments are evaluated before they are passed to the function (as in SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their value is needed (as in Haskell).

12 Architecture of the MaMa:

We know already the following components:

C

C $=$ Code-store - contains the MaMa-program; each cell contains one instruction;

PC $=$ Program Counter - points to the instruction to be executed next;

$\mathrm{S} \quad=\quad$ Runtime-Stack - each cell can hold a basic value or an address;
$\mathrm{SP}=$ Stack-Pointer - points to the topmost occupied cell; as in the CMa implicitely represented;
FP $\quad=\quad$ Frame-Pointer - points to the actual stack frame.

We also need a heap H :

\square Tag
\square Code Pointer
\square Value
\square Heap Pointer
... it can be thought of as an abstract data type, being capable of holding data objects of the following form:

v	
B	-173

Basic Value

Closure

Function

Vector

The instruction new (tag, args) creates a corresponding object (B, C, F, V) in H and returns a reference to it.

We distinguish three different kinds of code for an expression e :

- $\operatorname{code}_{V} e-$ (generates code that) computes the Value of e, stores it in the heap and returns a reference to it on top of the stack (the normal case);
- code $_{B} e$ - computes the value of e, and returns it on the top of the stack (only for Basic types);
- $\operatorname{code}_{C} e$ - does not evaluate e, but stores a Closure of e in the heap and returns a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals are translated like expressions in imperative languages:

$$
\begin{array}{lll}
\operatorname{code}_{B} b \rho \mathrm{sd} & = & \text { loadc } b \\
\operatorname{code}_{B}\left(\square_{1} e\right) \rho \mathrm{sd} & = & \operatorname{code}_{B} e \rho \mathrm{sd} \\
& \operatorname{op}_{1} \\
\operatorname{code}_{B}\left(e_{1} \square_{2} e_{2}\right) \rho \mathrm{sd}= & \operatorname{code}_{B} e_{1} \rho \mathrm{sd} \\
& \operatorname{code}_{B} e_{2} \rho(\mathrm{sd}+1) \\
& \mathrm{op}_{2}
\end{array}
$$

$$
\begin{aligned}
& \operatorname{code}_{B}\left(\text { if } e_{0} \text { then } e_{1} \text { else } e_{2}\right) \rho \text { sd }=\quad \operatorname{code}_{B} e_{0} \rho \mathrm{sd} \\
& \text { jumpzA } \\
& \operatorname{code}_{B} e_{1} \rho \mathrm{sd} \\
& \text { jump B } \\
& \text { A: } \operatorname{code}_{B} e_{2} \rho \mathrm{sd} \\
& \text { B: } \ldots
\end{aligned}
$$

Note:

- $\quad \rho$ denotes the actual address environment, in which the expression is translated. Address environments have the form:

$$
\rho: \text { Vars } \rightarrow\{L, G\} \times \mathbb{Z}
$$

- The extra argument sd, the stack difference, simulates the movement of the SP when instruction execution modifies the stack. It is needed later to address variables.
- The instructions op_{1} and op_{2} implement the operators \square_{1} and \square_{2}, in the same way as the the operators neg and add implement negation resp. addition in the CMa.
- For all other expressions, we first compute the value in the heap and then dereference the returned pointer:

$$
\begin{aligned}
\operatorname{code}_{B} e \rho \mathrm{sd}= & \operatorname{code}_{V} e \rho \mathrm{sd} \\
& \text { getbasic }
\end{aligned}
$$

if ($\mathrm{H}[\mathrm{S}[\mathrm{SP}]]$!= (B,_))
Error "not basic!";
else
$\mathrm{S}[\mathrm{SP}]=\mathrm{H}[\mathrm{S}[\mathrm{SP}]] . \mathrm{v} ;$

For code ${ }_{V}$ and simple expressions, we define analogously:

$$
\begin{aligned}
& \text { code }_{V} b \rho \text { sd } \quad=\quad \text { loadc } b ; \text { mkbasic } \\
& \operatorname{code}_{V}\left(\square_{1} e\right) \rho \mathrm{sd} \quad=\quad \operatorname{code}_{B} e \rho \mathrm{sd} \\
& \text { op }_{1} ; \text { mkbasic } \\
& \operatorname{code}_{V}\left(e_{1} \square_{2} e_{2}\right) \rho \text { sd } \quad=\quad \operatorname{code}_{B} e_{1} \rho \mathrm{sd} \\
& \operatorname{code}_{B} e_{2} \rho(\mathrm{sd}+1) \\
& \mathrm{op}_{2} ; \mathrm{mkbasic} \\
& \operatorname{code}_{V}\left(\text { if } e_{0} \text { then } e_{1} \text { else } e_{2}\right) \rho \text { sd }=\quad \operatorname{code}_{B} e_{0} \rho \mathrm{sd} \\
& \text { jumpz A } \\
& \operatorname{code}_{V} e_{1} \rho \text { sd } \\
& \text { jump B } \\
& \text { A: } \operatorname{code}_{V} e_{2} \rho \mathrm{sd} \\
& \text { B: ... }
\end{aligned}
$$

14 Accessing Variables

We must distinguish between local and global variables.

Example: \quad Regard the function f :

$$
\text { let } \begin{aligned}
& c=5 \\
& f=\mathbf{f n} a \Rightarrow \text { let } b=a * a \\
& \operatorname{in} b+c
\end{aligned}
$$

$$
\text { in } f c
$$

The function f uses the global variable c and the local variables a (as formal parameter) and b (introduced by the inner let).
The binding of a global variable is determined, when the function is constructed (static scoping!), and later only looked up.

Accessing Global Variables

- The bindings of global variables of an expression or a function are kept in a vector in the heap (Global Vector).
- They are addressed consecutively starting with 0 .
-When an F-object or a C-object are constructed, the Global Vector for the function or the expression is determined and a reference to it is stored in the gp-component of the object.
- During the evaluation of an expression, the (new) register GP (Global Pointer) points to the actual Global Vector.
- In constrast, local variables should be administered on the stack ...
\Longrightarrow General form of the address environment:

$$
\rho: \text { Vars } \rightarrow\{L, G\} \times \mathbb{Z}
$$

Accessing Local Variables

Local variables are administered on the stack, in stack frames.
Let $e \equiv e^{\prime} e_{0} \ldots e_{m-1}$ be the application of a function e^{\prime} to arguments e_{0}, \ldots, e_{m-1}.

Warning:

The arity of e^{\prime} does not need to be $\left.m \quad:-\right)$

- PuF functions have curried types, $f: t_{1} \rightarrow t_{2} \rightarrow \ldots \rightarrow t_{n} \rightarrow t$
- f may therefore receive less than n arguments (under supply);
- f may also receive more than n arguments, if t is a functional type (over supply).

Possible stack organisations:

+ Addressing of the arguments can be done relative to FP
- The local variables of e^{\prime} cannot be addressed relative to FP.
- If e^{\prime} is an n-ary function with $n<m$, i.e., we have an over-supplied function application, the remaining $m-n$ arguments will have to be shifted.
- If e^{\prime} evaluates to a function, which has already been partially applied to the parameters a_{0}, \ldots, a_{k-1}, these have to be sneaked in underneath e_{0} :

