
The Translation of Functional
Programming Languages

108



11 The language PuF

We only regard a mini-language PuF (“Pure Functions”).

We do not treat, as yet:

• Side effects;

• Data structures.

109



A Program is an expression e of the form:

e ::= b | x | (21 e) | (e1 22 e2)

| (if e0 then e1 else e2)

| (e′ e0 . . . ek−1)

| (fn x0, . . . , xk−1 ⇒ e)

| (let x1 = e1; . . . ; xn = en in e0)

| (letrec x1 = e1; . . . ; xn = en in e0)

An expression is therefore

• a basic value, a variable, the application of an operator, or

• a function-application, a function-abstraction, or

• a let-expression, i.e. an expression with locally defined variables, or

• a letrec-expression, i.e. an expression with simultaneously defined local
variables.

For simplicity, we only allow int and bool as basic types.

110



Example:

The following well-known function computes the factorial of a natural number:

letrec fac = fn x⇒ if x ≤ 1 then 1

else x · fac (x− 1)

in fac 7

As usual, we only use the minimal amount of parentheses.

There are two Semantics:

CBV: Arguments are evaluated before they are passed to the function (as in
SML);

CBN: Arguments are passed unevaluated; they are only evaluated when their
value is needed (as in Haskell).

111



12 Architecture of the MaMa:

We know already the following components:

0 1 PC

C

C = Code-store – contains the MaMa-program;

each cell contains one instruction;

PC = Program Counter – points to the instruction to be executed next;

112



0 SP

FP

S

S = Runtime-Stack – each cell can hold a basic value or an address;

SP = Stack-Pointer – points to the topmost occupied cell;

as in the CMa implicitely represented;

FP = Frame-Pointer – points to the actual stack frame.

113



We also need a heap H:

Tag

Heap Pointer

Value

Code Pointer

114



... it can be thought of as an abstract data type, being capable of holding data
objects of the following form:

nV

......

Vector

B

C

F

−173

cp gp

cp ap gp

Function

Closure

v

v[0] v[n−1]

Basic Value

115



The instruction new (tag, args) creates a corresponding object (B, C, F, V) in H
and returns a reference to it.

We distinguish three different kinds of code for an expression e:

• codeV e — (generates code that) computes the Value of e, stores it in the
heap and returns a reference to it on top of the stack (the normal case);

• codeB e — computes the value of e, and returns it on the top of the stack
(only for Basic types);

• codeC e — does not evaluate e, but stores a Closure of e in the heap and
returns a reference to the closure on top of the stack.

We start with the code schemata for the first two kinds:

116



13 Simple expressions

Expressions consisting only of constants, operator applications, and conditionals
are translated like expressions in imperative languages:

codeB b ρ sd = loadc b

codeB (21 e)ρ sd = codeB e ρ sd

op1

codeB (e1 22 e2)ρ sd = codeB e1 ρ sd

codeB e2 ρ (sd + 1)

op2

117



codeB (if e0 then e1 else e2)ρ sd = codeB e0 ρ sd

jumpz A

codeB e1 ρ sd

jump B

A: codeB e2 ρ sd

B: ...

118



Note:

• ρ denotes the actual address environment, in which the expression is
translated. Address environments have the form:

ρ : Vars→ {L, G} ×Z

• The extra argument sd, the stack difference, simulates the movement of the
SP when instruction execution modifies the stack. It is needed later to
address variables.

• The instructions op1 and op2 implement the operators 21 and 22, in the
same way as the the operators neg and add implement negation resp.
addition in the CMa.

• For all other expressions, we first compute the value in the heap and then
dereference the returned pointer:

codeB e ρ sd = codeV e ρ sd

getbasic

119



17B 17
getbasic

if (H[S[SP]] != (B,_))

else
S[SP] = H[S[SP]].v;

Error “not basic!”;

120



For codeV and simple expressions, we define analogously:

codeV b ρ sd = loadc b; mkbasic

codeV (21 e)ρ sd = codeB e ρ sd

op1 ; mkbasic

codeV (e1 22 e2)ρ sd = codeB e1 ρ sd

codeB e2 ρ (sd + 1)

op2 ; mkbasic

codeV (if e0 then e1 else e2)ρ sd = codeB e0 ρ sd

jumpz A

codeV e1 ρ sd

jump B

A: codeV e2 ρ sd

B: ...

121



17B17
mkbasic

S[SP] = new (B,S[SP]);

122



14 Accessing Variables

We must distinguish between local and global variables.

Example: Regard the function f :

let c = 5

f = fn a ⇒ let b = a ∗ a

in b + c

in f c

The function f uses the global variable c and the local variables a (as formal
parameter) and b (introduced by the inner let).

The binding of a global variable is determined, when the function is constructed
(static scoping!), and later only looked up.

123



Accessing Global Variables

• The bindings of global variables of an expression or a function are kept in a
vector in the heap (Global Vector).

• They are addressed consecutively starting with 0.

• When an F-object or a C-object are constructed, the Global Vector for the
function or the expression is determined and a reference to it is stored in the
gp-component of the object.

• During the evaluation of an expression, the (new) register GP (Global
Pointer) points to the actual Global Vector.

• In constrast, local variables should be administered on the stack ...

==⇒ General form of the address environment:

ρ : Vars→ {L, G} ×Z

124



Accessing Local Variables

Local variables are administered on the stack, in stack frames.

Let e ≡ e′ e0 . . . em−1 be the application of a function e′ to arguments
e0, . . . , em−1.

Warning:

The arity of e′ does not need to be m :-)

• PuF functions have curried types, f : t1 → t2 → . . .→ tn → t

• f may therefore receive less than n arguments (under supply);

• f may also receive more than n arguments, if t is a functional type (over
supply).

125



Possible stack organisations:

FP

F e′

e0

em−1

+ Addressing of the arguments can be done relative to FP

− The local variables of e′ cannot be addressed relative to FP.

− If e′ is an n-ary function with n < m, i.e., we have an over-supplied function
application, the remaining m− n arguments will have to be shifted.

126



− If e′ evaluates to a function, which has already been partially applied to the
parameters a0, . . . , ak−1, these have to be sneaked in underneath e0:

FP

a1

em−1

e0

a0

127


