
Alternative:

FP

F e′

em−1

e0

+ The further arguments a0, . . . , ak−1 and the local variables can be allocated
above the arguments.

128

FP

e0

a0

a1

em−1

− Addressing of arguments and local variables relative to FP is no more
possible. (Remember: m is unknown when the function definition is
translated.)

129

Way out:

• We address both, arguments and local variables, relative to the stack pointer
SP !!!

• However, the stack pointer changes during program execution...

FP

sd
SP

0sp e0

em−1

130

• The differerence between the current value of SP and its value sp0 at the
entry of the function body is called the stack distance, sd.

• Fortunately, this stack distance can be determined at compile time for each
program point, by simulating the movement of the SP.

• The formal parameters x0, x1, x2, . . . successively receive the non-positive
relative addresses 0,−1,−2, . . ., i.e., ρ xi = (L,−i).

• The absolute address of the i-th formal parameter consequently is

sp0 − i = (SP− sd)− i

• The local let-variables y1, y2, y3, . . . will be successively pushed onto the
stack:

131

:

sd

SP

sp 0

2

1

0

−2

−1

3 y3

y1

x0

xk−1

x1

y2

• The yi have positive relative addresses 1, 2, 3, . . ., that is: ρ yi = (L, i).

• The absolute address of yi is then sp0 + i = (SP− sd) + i

132

With CBN, we generate for the access to a variable:

codeV x ρ sd = getvar x ρ sd

eval

The instruction eval checks, whether the value has already been computed
or whether its evaluation has to yet to be done (==⇒ will be treated later :-)

With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvar x ρ sd = let (t, i) = ρ x in

case t of

L⇒ pushloc (sd− i)

G⇒ pushglob i

end

133

The access to local variables:

n

pushloc n

S[SP+1] =S[SP - n]; SP++;

134

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the
execution of the instruction. The value of the local variable with address i is
loaded from S[a] with

a = sp− (sd− i) = (sp− sd) + i = sp0 + i

... exactly as it should be :-)

135

The access to global variables is much simpler:

VGP VGP

i

pushglob i

SP = SP + 1;
S[SP] = GP→v[i];

136

Example:

Regard e ≡ (b + c) for ρ = {b 7→ (L, 1), c 7→ (G, 0)} and sd = 1.

With CBN, we obtain:

codeV e ρ 1 = getvar b ρ 1 = 1 pushloc 0

eval 2 eval

getbasic 2 getbasic

getvar c ρ 2 2 pushglob 0

eval 3 eval

getbasic 3 getbasic

add 3 add

mkbasic 2 mkbasic

137

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)

Let e ≡ let y1 = e1; . . . ; yn = en in e0 be a let-expression.

The translation of e must deliver an instruction sequence that

• allocates local variables y1, . . . , yn;

• in the case of
CBV: evaluates e1, . . . , en and binds the yi to their values;
CBN: constructs closures for the e1, . . . , en and binds the yi to them;

• evaluates the expression e0 and returns its value.

Here, we consider the non-recursive case only, i.e. where y j only depends on
y1, . . . , y j−1. We obtain for CBN:

138

codeV e ρ sd = codeC e1 ρ sd

codeC e2 ρ1 (sd + 1)

. . .

codeC en ρn−1 (sd + n− 1)

codeV e0 ρn (sd + n)

slide n // deallocates local variables

where ρ j = ρ⊕ {yi 7→ (L, sd + i) | i = 1, . . . , j}.

In the case of CBV, we use codeV for the expressions e1, . . . , en.

Warning!

All the ei must be associated with the same binding for the global variables!

139

Example:

Consider the expression

e ≡ let a = 19; b = a ∗ a in a + b

for ρ = ∅ and sd = 0. We obtain (for CBV):

0 loadc 19 3 getbasic 3 pushloc 1

1 mkbasic 3 mul 4 getbasic

1 pushloc 0 2 mkbasic 4 add

2 getbasic 2 pushloc 1 3 mkbasic

2 pushloc 1 3 getbasic 3 slide 2

140

The instruction slide k deallocates again the space for the locals:

k
slide k

S[SP-k] = S[SP];
SP = SP - k;

141

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f
in the heap. This happens in the following steps:

• Creation of a Global Vector with the binding of the free variables;

• Creation of an (initially empty) argument vector;

• Creation of an F-Object, containing references to these vectors and the start
address of the code for the body;

Separately, code for the body has to be generated.

Thus:

142

codeV (fn x0, . . . , xk−1 ⇒ e)ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g− 1)

mkvec g

mkfunval A

jump B

A : targ k

codeV e ρ′ 0

return k

B : . . .

where {z0, . . . , zg−1} = free(fn x0 , . . . , xk−1 ⇒ e)
and ρ′ = {xi 7→ (L,−i) | i = 0, . . . , k− 1} ∪ {z j 7→ (G, j) | j = 0, . . . , g− 1}

143

g mkvec g

h = new (V, n);
SP = SP - g + 1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g

144

F A

mkfunval A V 0

V V

a = new (V,0);
S[SP] = new (F, A, a, S[SP]);

145

Example:

Regard f ≡ fn b⇒ a + b for ρ = {a 7→ (L, 1)} and sd = 1.

codeV f ρ 1 produces:

1 pushloc 0 0 pushglob 0 2 getbasic

2 mkvec 1 1 eval 2 add

2 mkfunval A 1 getbasic 1 mkbasic

2 jump B 1 pushloc 1 1 return 1

0 A : targ 1 2 eval 2 B : ...

The secrets around targ k and return k will be revealed later :-)

146

17 Function Application

Function applications correspond to function calls in C.
The necessary actions for the evaluation of e′ e0 . . . em−1 are:

• Allocation of a stack frame;

• Transfer of the actual parameters , i.e. with:
CBV: Evaluation of the actual parameters;
CBN: Allocation of closures for the actual parameters;

• Evaluation of the expression e′ to an F-object;

• Application of the function.

Thus for CBN:

147

codeV (e′ e0 . . . em−1)ρ sd = mark A // Allocation of the frame

codeC em−1 ρ (sd + 3)

codeC em−2 ρ (sd + 4)

. . .

codeC e0 ρ (sd + m + 2)

codeV e′ ρ (sd + m + 3) // Evaluation of e′

apply // corresponds to call

A : ...

To implement CBV, we use codeV instead of codeC for the arguments ei.

Example: For (f 42) , ρ = { f 7→ (L, 2)} and sd = 2, we obtain with CBV:

2 mark A 6 mkbasic 7 apply

5 loadc 42 6 pushloc 4 3 A : ...

148

A Slightly Larger Example:

let a = 17; f = fn b⇒ a + b in f 42

For CBV and sd = 0 we obtain:

0 loadc 17 2 jump B 2 getbasic 5 loadc 42

1 mkbasic 0 A: targ 1 2 add 5 mkbasic

1 pushloc 0 0 pushglob 0 1 mkbasic 6 pushloc 4

2 mkvec 1 1 getbasic 1 return 1 7 apply

2 mkfunval A 1 pushloc 1 2 B: mark C 3 C: slide 2

149

For the implementation of the new instruction, we must fix the organization of a
stack frame:

FPold

PCold

GPold

FP 0
-1
-2

local stack

3 org. cells

SP

Arguments

150

Remember: Addressing of arguments and local variables

FP

sd
SP

0sp e0

em−1

151

Different from the CMa, the instruction mark A already saves the return
address:

V V

A

mark A

GP GP

FP = SP = SP + 3;

FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;

152

The instruction apply unpacks the F-object, a reference to which (hopefully)
resides on top of the stack, and continues execution at the address given there:

42

GP

PC 42

GP

PC
F

ap gp
apply

VV

for (i=0; i< h→ap→n; i++)
S[SP+i] = h→ap→v[i];

SP = SP + h→ap→n – 1;
}

else {
Error “no fun”;

h = S[SP];
if (H[h] != (F,_,_))

GP = h→gp; PC = h→cp;

V n

153

Warning:

• The last element of the argument vector is the last to be put onto the stack.
This must be the first argument reference.

• This should be kept in mind, when we treat the packing of arguments of an
under-supplied function application into an F-object !!!

154

18 Over– and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an
apply is targ k .

This instruction checks whether there are enough arguments to evaluate the
body.

Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP – FP

155

targ k is a complex instruction.

We decompose its execution in the case of under-supply into several steps:

targ k = if (SP – FP < k) {

mkvec0; // creating the argumentvector

wrap; // wrapping into an F− object

popenv; // popping the stack frame

}

The combination of these steps into one instruction is a kind of optimization :-)

156

The instruction mkvec0 takes all references from the stack above FP and
stores them into a vector:

FPFP

g
mkvec0

g = SP–FP; h = new (V, g);
SP = FP+1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g

157

The instruction wrap A wraps the argument vector together with the global
vector into an F-object:

ap gp

GPGP

wrap A VV

V V

F A

S[SP] = new (F, A, S[SP], GP);

158

