
The instruction popenv finally releases the stack frame:

19

42PC

GP

FP

19

42 FPpopenv

GP = S[FP-2];

FP = S[FP-1];

S[FP-2] = S[SP];
PC = S[FP];
SP = FP - 2;

159



Thus, we obtain for targ k in the case of under supply:

FP

GP

PC 42

17

V

V

mkvek0

160



FP

GP

PC 42

17

V

V

V m

wrap

161



FP

41GP

PC 42

17

V

V

V m

F

popenv

162



GP

PC

41

17

FP

V

V

V

F

163



GP

PC

41

17

FP

V

V

V

F

164



• The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

• If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ...

• The check for this is done by return k:

return k = if (SP − FP = k + 1)

popenv; // Done

else { // There are more arguments

slide k;

apply; // another application

}

The execution of return k results in:

165



Case: Done

GP

PC

FP

17

GP

PC

17FP

VV

k
popenv

166



Case: Over-supply

FP FP

F

k
slide k

F

apply

167



19 letrec-Expressions

Consider the expression e ≡ letrec y1 = e1; . . . ; yn = en in e0 .

The translation of e must deliver an instruction sequence that

• allocates local variables y1, . . . , yn;

• in the case of

CBV: evaluates e1, . . . , en and binds the yi to their values;

CBN: constructs closures for the e1, . . . , en and binds the yi to them;

• evaluates the expression e0 and returns its value.

Warning:

In a letrec-expression, the definitions can use variables that will be allocated

only later! ==⇒ Dummy-values are put onto the stack before processing the

definition.

168



For CBN, we obtain:

codeV e ρ sd = alloc n // allocates local variables

codeC e1 ρ
′ (sd + n)

rewrite n

. . .

codeC en ρ
′ (sd + n)

rewrite 1

codeV e0 ρ
′ (sd + n)

slide n // deallocates local variables

where ρ
′ = ρ ⊕ {yi 7→ (L, sd + i) | i = 1, . . . , n}.

In the case of CBV, we also use codeV for the expressions e1, . . . , en.

Warning:

Recursive definitions of basic values are undefined with CBV!!!

169



Example:

Consider the expression

e ≡ letrec f = fnx, y ⇒ ify ≤ 1 then x else f (x ∗ y)(y − 1) in f 1

for ρ = ∅ and sd = 0. We obtain (for CBV):

0 alloc 1 0 A: targ 2 4 loadc 1

1 pushloc 0 0 ... 5 mkbasic

2 mkvec 1 1 return 2 5 pushloc 4

2 mkfunval A 2 B: rewrite 1 6 apply

2 jump B 1 mark C 2 C: slide 1

170



The instruction alloc n reserves n cells on the stack and initialises them with

n dummy nodes:

−1 −1C
−1 −1C
−1 −1C
−1 −1C

n
alloc n

S[SP+i] = new (C,-1,-1);
SP = SP + n;

for (i=1; i<=n; i++)

171



The instruction rewrite n overwrites the contents of the heap cell pointed to

by the reference at S[SP–n]:

n

x

rewrite n

H[S[SP-n]] = H[S[SP]];
SP = SP - 1;

x

• The reference S[SP – n] remains unchanged!

• Only its contents is changed!

172



20 Closures and their Evaluation

• Closures are needed only for the implementation of CBN.

• Before the value of a variable is accessed (with CBN), this value must be

available.

• Otherwise, a stack frame must be created to determine this value.

• This task is performed by the instruction eval.

173



eval can be decomposed into small actions:

eval = if (H[S[SP]] ≡ (C, _, _)) {

mark0; // allocation of the stack frame

pushloc 3; // copying of the reference

apply0; // corresponds to apply

}

• A closure can be understood as a parameterless function. Thus, there is no

need for an ap-component.

• Evaluation of the closure thus means evaluation of an application of this

function to 0 arguments.

• In constrast to mark A , mark0 dumps the current PC.

• The difference between apply and apply0 is that no argument vector

is put on the stack.

174



V

1717

V

17

mark0

FP = SP = SP + 3;

GP

PCPC

GP FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = PC;

175



42C

gpcp

GP

PC

GP

PC

C

gp

42

42

cp

apply0

V V

GP = h→gp; PC = h→cp;
h = S[SP]; SP--;

We thus obtain for the instruction eval:

176



gp

FP

C

cp

42

GP

PC 17

3

mark0V

gp

3

3

17

17

FP

C

cp

42

GP

PC

pushloc 3V

177



gp

3

3

17

17

FP

C

cp

42

GP

PC

apply0V

3

17

FP

C

cp

42

GP

PC

gp

42

V

178



The construction of a closure for an expression e consists of:

• Packing the bindings for the free variables into a vector;

• Creation of a C-object, which contains a reference to this vector and to the

code for the evaluation of e:

codeC e ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g − 1)

mkvec g

mkclos A

jump B

A : codeV e ρ
′ 0

update

B : . . .

where {z0, . . . , zg−1} = free(e) and ρ
′ = {zi 7→ (G, i) | i = 0, . . . , g − 1}.

179



Example:

Consider e ≡ a ∗ a with ρ = {a 7→ (L, 0)} and sd = 1. We obtain:

1 pushloc 1 0 A: pushglob 0 2 getbasic

2 mkvec 1 1 eval 2 mul

2 mkclos A 1 getbasic 1 mkbasic

2 jump B 1 pushglob 0 1 update

2 eval 2 B: ...

180



• The instruction mkclos A is analogous to the instruction mkfunval A.

• It generates a C-object, where the included code pointer is A.

C A

mkclos A

V V

S[SP] = new (C, A, S[SP]);

181



In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

C

19

42PC

GP

FP

19

42 FP
update

182


