
21 Optimizations I: Global Variables

Observation:

• Functional programs construct many F- and C-objects.

• This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expression e ...

183

codeC e ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g − 1)

mkvec g

mkclos A

jump B

A : codeV e ρ
′ 0

update

B : . . .

where {z0, . . . , zg−1} = free(e) and ρ
′ = {zi 7→ (G, i) | i = 0, . . . , g − 1}.

184

Idea:

• Reuse Global Vectors, i.e. share Global Vectors!

• Profitable in the translation of let-expressions or function applications: Build

one Global Vector for the union of the free-variable sets of all let-definitions

resp. all arguments.

• Allocate (references to) global vectors with multiple uses in the stack frame

like local variables!

• Support the access to the current GP by an instruction copyglob :

185

GP GP

copyglob

SP++;
S[SP] = GP;

V V

186

• The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ...

Disadvantage: Superfluous components in Global Vectors prevent the

deallocation of already useless heap objects ==⇒ Space Leaks :-(

Potential Remedy: Deletion of references at the end of their life time.

187

22 Optimizations II: Closures

In some cases, the construction of closures can be avoided, namely for

• Basic values,

• Variables,

• Functions.

188

Basic Values:

The construction of a closure for the value is at least as expensive as the

construction of the B-object itself!

Therefore:

codeC b ρ sd = codeV b ρ sd = loadc b

mkbasic

This replaces:

mkvec 0 jump B mkbasic B: ...

mkclos A A: loadc b update

189

Variables:

Variables are either bound to values or to C-objects. Constructing another

closure is therefore superfluous. Therefore:

codeC x ρ sd = getvar x ρ sd

This replaces:

getvar x ρ sd mkclos A A: pushglob 0 update

mkvec 1 jump B eval B: ...

Example: e ≡ letrec a = b; b = 7 in a. codeV e ∅ 0 produces:

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

The execution of this instruction sequence should deliver the basic value 7 ...

190

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

alloc 2

191

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

pushloc 0

192

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

rewrite 2

193

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

loadc 7

194

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

7

mkbasic

195

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7

−1−1C

−1−1C

B

rewrite 1

196

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7B

−1−1C

pushloc 1

197

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7B

−1−1C

−1−1C

eval

198

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

Segmentation Fault !!

199

Apparently, this optimization was not quite correct :-(

The Problem:

Binding of variable y to variable x before x’s dummy node is replaced!!

==⇒

The Solution:

cyclic definitions: reject sequences of definitions like

let a = b; . . . b = a in

acyclic definitions: order the definitions y = x such that the dummy node for

the right side of x is already overwritten.

200

Functions:

Functions are values, which are not evaluated further. Instead of generating

code that constructs a closure for an F-object, we generate code that constructs

the F-object directly.

Therefore:

codeC (fn x0 , . . . , xk−1 ⇒ e) ρ sd = codeV (fn x0 , . . . , xk−1 ⇒ e) ρ sd

201

23 The Translation of a Program Expression

Execution of a program e starts with

PC = 0 SP = FP = GP = −1

The expression e must not contain free variables.

The value of e should be determined and then a halt instruction should be

executed.

code e = codeV e ∅ 0

halt

202

Remarks:

• The code schemata as defined so far produce Spaghetti code.

• Reason: Code for function bodies and closures placed directly behind the

instructions mkfunval resp. mkclos with a jump over this code.

• Alternative: Place this code somewhere else, e.g. following the

halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and

mkclos.

Disadvantage: The code schemata are more complex as they would have to

accumulate the code pieces in a Code-Dump.

==⇒

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

203

Example: let a = 17; f = fn b ⇒ a + b in f 42

Disentanglement of the jumps produces:

0 loadc 17 2 mark B 3 B: slide 2 1 pushloc 1

1 mkbasic 5 loadc 42 1 halt 2 eval

1 pushloc 0 6 mkbasic 0 A: targ 1 2 getbasic

2 mkvec 1 6 pushloc 4 0 pushglob 0 2 add

2 mkfunval A 7 eval 1 eval 1 mkbasic

7 apply 1 getbasic 1 return 1

204

24 Structured Data

In the following, we extend our functional programming language by some

datatypes.

24.1 Tuples

Constructors: (., . . . , .), k-ary with k ≥ 0;

Destructors: # j for j ∈ N0 (Projections)

We extend the syntax of expressions correspondingly:

e ::= . . . | (e0, . . . , ek−1) | # j e

| let (x0, . . . , xk−1) = e1 in e0

205

• In order to construct a tuple, we collect sequence of references on the stack.

Then we construct a vector of these references in the heap using mkvec

• For returning components we use an indexed access into the tuple.

codeV (e0, . . . , ek−1) ρ sd = codeC e0 ρ sd

codeC e1 ρ (sd + 1)

. . .

codeC ek−1 ρ (sd + k − 1)

mkvec k

codeV (# j e) ρ sd = codeV e ρ sd

get j

In the case of CBV, we directly compute the values of the ei.

206

j

get j

V g V g

S[SP] = v[j];
if (S[SP] == (V,g,v))

else Error “Vector expected!”;

207

Inversion: Accessing all components of a tuple simulataneously:

e ≡ let (y0, . . . , yk−1) = e1 in e0

This is translated as follows:

codeV e ρ sd = codeV e1 ρ sd

getvec k

codeV e0 ρ
′ (sd + k)

slide k

where ρ
′ = ρ ⊕ {yi 7→ (L, sd + i) | i = 0, . . . , k − 1}.

The instruction getvec k pushes the components of a vector of length k onto

the stack:

208

getvec k

V kV k

SP--;

SP++; S[SP] = v[i];
}

} else Error “Vector expected!”;

if (S[SP] == (V,k,v)) {

for(i=0; i<k; i++) {

209

24.2 Lists

Lists are constructed by the constructors:

[] “Nil”, the empty list;

“:” “Cons”, right-associative, takes an element and a list.

Access to list components is possible by case-expressions ...

Example: The append function app:

app = fn l, y ⇒ case l of

[] → y

h : t → h : (app t y)

210

accordingly, we extend the syntax of expressions:

e ::= . . . | [] | (e1 : e2)

| (case e0 of [] → e1; h : t → e2)

Additionally, we need new heap objects:

Nil

Cons

s[0] s[1]

L

L

empty list

non−empty list

211

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes.

We translate for CBN:

codeV [] ρ sd = nil

codeV (e1 : e2) ρ sd = codeC e1 ρ sd

codeC e2 ρ (sd + 1)

cons

Note:

• With CBN: Closures are constructed for the arguments of “:”;

• With CBV: Arguments of “:” are evaluated :-)

212

NilL
nil

S[SP] = SP++; S[SP] = new (L,Nil);

213

ConsL

cons

S[SP-1] = new (L,Cons, S[SP-1], S[SP]);
SP- -;

214

24.4 Pattern Matching

Consider the expression e ≡ case e0 of [] → e1; h : t → e2.

Evaluation of e requires:

• evaluation of e0;

• check, whether resulting value v is an L-object;

• if v is the empty list, evaluation of e1 ...

• otherwise storing the two references of v on the stack and evaluation of e2.

This corresponds to binding h and t to the two components of v.

215

In consequence, we obtain (for CBN as for CBV):

codeV e ρ sd = codeV e0 ρ sd

tlist A

codeV e1 ρ sd

jump B

A : codeV e2 ρ
′ (sd + 2)

slide 2

B : ...

where ρ
′ = ρ ⊕ {h 7→ (L, sd + 1), t 7→ (L, sd + 2)}.

The new instruction tlist A does the necessary checks and (in the case of

Cons) allocates two new local variables:

216

NilL NilL
tlist A

h = S[SP];

...

if (H[h] != (L,...)
Error “no list!”;

if (H[h] == (_,Nil)) SP- -;

217

PC A

ConsL ConsL

tlist A

S[SP] = S[SP]→s[0];

... else {

}

S[SP+1] = S[SP]→s[1];

SP++; PC = A;

218

Example: The (disentangled) body of the function app with

app 7→ (G, 0) :

0 targ 2 3 pushglob 0 0 C: mark D

0 pushloc 0 4 pushloc 2 3 pushglob 2

1 eval 5 pushloc 6 4 pushglob 1

1 tlist A 6 mkvec 3 5 pushglob 0

0 pushloc 1 4 mkclos C 6 eval

1 eval 4 cons 6 apply

1 jump B 0 slide 2 1 D: update

2 A: pushloc 1 3 B: return 2

Note:

Datatypes with more than two constructors need a generalization of the tlist

instruction, corresponding to a switch-instruction :-)

219

24.5 Closures of Tuples and Lists

The general schema for codeC can be optimized for tuples and lists:

codeC (e0, . . . , ek−1) ρ sd = codeV (e0, . . . , ek−1) ρ sd = codeC e0 ρ sd

codeC e1 ρ (sd + 1)

. . .

codeC ek−1 ρ (sd + k − 1)

mkvec k

codeC [] ρ sd = codeV [] ρ sd = nil

codeC (e1 : e2) ρ sd = codeV (e1 : e2) ρ sd = codeC e1 ρ sd

codeC e2 ρ (sd + 1)

cons

220

25 Last Calls

A function application is called last call in an expression e if this application

could deliver the value for e.

A last call usually is the outermost application of a defining expression.

A function definition is called tail recursive if all recursive calls are last calls.

Examples:

r t (h : y) is a last call in case x of [] → y; h : t → r t (h : y)

f (x − 1) is not a last call in if x ≤ 1 then 1 else x ∗ f (x − 1)

Observation: Last calls in a function body need no new stack frame!

==⇒

Automatic transformation of tail recursion into loops!!!

221

The code for a last call l ≡ (e′ e0 . . . em1
) inside a function f with k arguments

must

1. allocate the arguments ei and evaluate e′ to a function (note: all this inside

f ’s frame!);

2. deallocate the local variables and the k consumed arguments of f ;

3. execute an apply.

codeV l ρ sd = codeC em−1 ρ sd

codeC em−2 ρ (sd + 1)

. . .

codeC e0 ρ (sd + m − 1)

codeV e′ ρ (sd + m) // Evaluation of the function

move r (m + 1) // Deallocation of r cells

apply

where r = sd + k is the number of stack cells to deallocate.

222

Example:

The body of the function

r = fn x, y ⇒ case x of [] → y; h : t → r t (h : y)

0 targ 2 1 jump B 4 pushglob 0

0 pushloc 0 5 eval

1 eval 2 A: pushloc 1 5 move 4 3

1 tlist A 3 pushloc 4 apply

0 pushloc 1 4 cons slide 2

1 eval 3 pushloc 1 1 B: return 2

Since the old stack frame is kept, return 2 will only be reached by the direct

jump at the end of the []-alternative.

223

r

SP = SP – k – r;
for (i=1; i≤k; i++)

S[SP+i] = S[SP+i+r];
SP = SP + k;

k

move r k

224

