
Technische Universität München
Fakultät für Informatik
Prof. Dr. H. Seidl

Summer Semester 08
Vesal Vojdani

vojdanig@in.tum.de

Compiler Construction &
Virtual Machines

Exercise Sheet 1

Deadline: 23. April 2008, 12:00, during the lecture or in room 02.07.053

Exercise 1: Code generation 8 Points

Consider the following instruction sequence.

z = 1;

while (n > 0) {

j = 1;

y = x;

while (2 * j <= n) {

y = y * y;

j = j * 2;

}

z = y * z;

n = n - j;

}

a) What does the instruction sequence compute?

b) Generate CMa code for the instruction sequence.
Use the address environment ρ = {n 7→ 0, j 7→ 1, x 7→ 2, y 7→ 3, z 7→ 4} !

Exercise 2: Registers 12 Points

We extend the CMa machine by adding an unbounded number of registers R0, R1, . . .. To
improve efficiency, expressions are evaluated by storing intermediate values in registers
instead of on the stack. For example, to evaluate x ∗ y + 2 and to store the result in R42,
we first put the address of x in R42, put S[R42] in R42, put the address of y in R43, put
S[R43] in R43, put R42 ∗R43 in R42, put 2 in R43 and then put R42 +R43 in R42.

a) Choose a set of new CMa instructions for doing this translation.

b) Give the translation scheme for evaluation of expressions and assignment statements.
For this purpose, extend the functions codeL and codeR to now take an additional
argument i, such that Ri is the register in which to store the result of evaluation.
Think of i as a static stack pointer: we assume the invariant that all registers Rj

with j ≥ i are free for our use in evaluating the given expression. The generated
code should produce instructions involving concrete registers, such as R7 and R42,
not RR0 or RSP .


