
Technische Universität München
Fakultät für Informatik
Prof. Dr. H. Seidl

Summer Semester 08
Vesal Vojdani

vojdanig@in.tum.de

Compiler Construction

Exercise Sheet 6

Deadline: 4. June 2008, at the lecture, in room 02.07.053, or by e-mail.

Exercise 1: Push-Down Automata 6 Points

Let Σ = {a, b}. Give the context-free grammar for the following languages and the corre-
sponding non-deterministic push-down automata for one of them:

a) {u | u ∈ Σ∗; #au = #bu};
b) {u | u ∈ Σ∗; #au 6= #bu};
c) {uv | u, v ∈ Σ∗; |u|= |v|; u 6=v},

where #xw is the number of times the symbol x occurs in w, and |w| is the length of the
word w.

Exercise 2: Extended context-free grammar 5 Points

Sometimes the notation of context-free grammars are extended with constructs that pro-
vide some of the convenient notation of regular expressions. We introduce the use of
square and curly brackets in production bodies, e.g. A → X [Y ] Z and A → X {Y } Z,
respectively. The square brackets mean that the content is optional (Y ?), while the curly
brackets says that the content can be repeated zero or more times (Y ∗). Show that any
language than can be generated by this a grammar using these extensions can also be
generated with a context free grammar without using the extensions.

Exercise 3: Finite automata cannot count 5 Points

The above exercise indicates that any regular language can be expressed by a context-free
grammar. A more direct proof would be based on translating the transitions of the DFA
to productions. A more interesting fact is that context-free languages are more powerful
than regular ones, where the classic example is {anbn|n ∈ N}. Prove this by making the
contradictory assumption that you have a finite automata with k states which recognizes
this language. Think about what must happen after reading more than k occurrences of
the character a in some input string.
(Prove this yourself, or if you run into trouble, look it up in a book or recall it from some
other lecture. I still want to you to prove it!)



Exercise 4: The CYK algorithm 10 Points

The goal of this exercise is to get close to finding the Cocke-Younger-Kasami algorithm
for any context-free language, which works best on grammars in Chomsky Normal Form.
This is a long exercise, focus mainly on working out the examples; general algorithms are
appreciated, but not necessary, the grading will be gentle. :)
A grammar is in Chomsky Normal Form (CNF), when each of its productions is in one
of the following forms:

A→ t for terminal symbol t (1)
A→ BC for non-terminals B and C (2)

Assume you are given a grammar in CNF, then the algorithm to recognize the string
a1a2 · · · an works using dynamic programming by filling in a n × n matrix T such that
Tij is the set of non-terminals that derive the substring aiai+1 · · · aj. Most of our work is
therefore concerned with bringing context-free grammars to CNF.

a) Consider the following grammar, which is in CNF:

S → SA S → AB A→ BA A→ a B → b

Create the table to recognize the word babba starting from the diagonal, which
corresponds to application of the productions of type (1), and working towards
getting S into the corner T1n using the productions of type (2) by combining all
possible splits of the string into two-substrings. Note that there are two parses of
this string, which you should detect.

b) Show how to transform a given grammar to a grammar in CNF, which generates
the same language, except the empty string ε, which CNF grammars can’t gene-
rate.) You can try right away to solve this, or use the following steps to eliminate
problematic productions step-by-step.

c) Give a method to eliminate all ε-productions (A→ ε) from a given grammar. Again,
we aim for an equivalent grammar, except the ability to generate the empty string.
It helps to first find the set of all non-terminals A such that A →∗ ε. Try your
algorithm on

S → aSB | B B → bS | ε

d) Having eliminated ε-productions, now get rid of single productions (A→ B). Here,
it helps to keep track of a set of pairs of non-terminals such that A →∗ B by a
sequence of single production. Try this on

S → S + T | T
T → T ∗ F | F
F → (S) | t

e) When you know how to get rid off ε- and single productions, you only need a few
more tweaks to get any grammar to CNF. Figure these out and then bring the
grammar from d) to CNF using your method.


