
Technische Universität München
Fakultät für Informatik
Prof. Dr. H. Seidl

Summer Semester 08
Vesal Vojdani

vojdanig@in.tum.de

Compiler Construction

Exercise Sheet 9

Deadline: 2. July 2008, at the lecture, in room 02.07.053, or by e-mail.

Exercise 1: Type-equivalence 3+3 Points

Check with the methods presented in the lecture whether the following two types are
semantically equivalent:

a)
class Tree{

int n;
Tree l,r;

}

class Tree1{
int n;
Tree1 r;
Tree2 l;

}

class Tree2{
int n;
Tree1 l,r;

}

b)
class Tree{

int n;
Tree l,r;

}

class Tree1{
int n;
Tree2 t;

}

class Tree2{
Tree1 l,r;

}

Exercise 2: Type inference 6 Points

Consider the following expressions in the functional language of the lecture. Infer their
types!

a) letrec r = fn x ⇒ if x = 0 then 0 else x + r (x-1)
b) letrec f = fn t ⇒

case t of [] → [] | [(l,x,r)] → [((f l),0,(f r))]

Exercise 3: Extending type inference 10 Points

Let’s extend the language and its type system to allow user defined data types. Consider
the following example of a binary tree:

datatype tree t = Leaf t | Node (tree t,tree t)

Here, t is a type variable, which can be instantiated with for example integers to obtain the
type of integer trees tree int. A concrete element of this type is for example Node(Leaf
1,Leaf 2). We call tree a type constructor, while Leaf and Node are data constructors.
In general, a type definition has the following form:

datatype <Type-identifier> (t1,...,tm) =
<Constructor_1> [<Type-expression_1>]

|
| <Constructor_n> [<Type-expression_n>]

where the type-variables t1,...,tn as well as the type identifier itself may be used in
the body of the type expression:

datatype list t = Nil | Cons (t, list t)
datatype rose t = Rose (t, list (Rose t))

The case-expression is expanded to allow pattern matching over the different alternative
constructors of the data type:

letrec
count = fn tree =>

case tree of
Leaf _ -> 1

| Node(x,y) -> (count x)+(count y)
in count (Node(Leaf 1,Leaf 2))

This function computes the number of leaves in the tree Node(Leaf 1,Leaf 2), which is
2. Now we expand the type system to deal with these new constructs.

1. Extend the typing rules for dealing with data constructors and pattern-matching.

2. Show how the system of type-equalities are now generated.

3. Extend the algorithm W .

4. Use your algorithm to compute the type of the function count defined above.

