Technische Universitdt Miinchen Summer Semester 08
Fakultéat fiir Informatik Vesal Vojdani
Prof. Dr. H. Seidl vojdanig@in.tum.de

Compiler Construction &
Virtual Machines

FEzxercise Sheet 3
Deadline: 5. May 2008, at the lecture, in room 02.07.053, or by e-maal.

Exercise 1: Variable initialization 6 Points

Extend the translation function code to initialization constructions, such as int x = 5.
If no initializer is given, then you should set the variable to its null value, i.e., set the
entire allocated area to zeroes. Structs and arrays initializers are given as a list of constant
expressions, e.g., int a[3] = {1, 2, 4}

Exercise 2: Break and Continue 4 Points

Modify the scheme for translation of loops, to take care of the break statement, for
the immediate termination of a loop, and continue statements for skipping to the next
iteration of the loop. For this purpose, you may wish to extend the code generation
function to take a further argument, a pair of labels (I, [.), which characterize the labels
that exit and continue the loop. Your solution need only give the translation function for
one of the looping constructs, e.g., the while-statment.

Exercise 3: Code generation: Function calls 8 Points

Generate the code for the following. Make sure it runs on the CMa of the VAM system.
It should run for a fairly long time, 111 recursive calls. Send the solution by e-mail as a
nicely commented .cma file.

int f(int n) {
if (n % 2 == 0) return n/2;
else return (3*n + 1);

by

int c(n) {
if (n <= 1) return 1;
else return c(f(n));

}

int main() {
c(27);
}



Exercise 4: Call-by-name 6 Points

Change the way paramters, even integers, are passed to procedures to adopt a call-by-
name translation scheme. This is how reference types in C++ and non-primitive types in
Java are handled. Consider the following example:

int x;

int f(int i) {
i= 27;

}

int main() {
f(x);
}

The value of z should be 27 after the function call.

a) Give the translation-scheme for function calls.

b) Write a VAM executable .cma file for this example using your new translation func-
tion.

Exercise 5: Varargs No Points

Try to come up with a scheme to translate variadic functions, such as the one in the
following piece of C code.

#include<stdio.h>
#include<stdarg.h>

double avg(int n, ...) {
double sum = 0;
int i = 0;
va_list e;

va_start(e, n);
while (i++ < n)
sum += va_arg(e, int);
va_end(e) ;
return (sum/n);

int main() {
printf ("%f\n", avg(3, 1,3,7));
return O;

}

This is for discussion during the lab, it is not graded.



