
Technische Universität München
Fakultät für Informatik
Prof. Dr. H. Seidl

Summer Semester 08
Vesal Vojdani

vojdanig@in.tum.de

Compiler Construction &
Virtual Machines

Exercise Sheet 3

Deadline: 5. May 2008, at the lecture, in room 02.07.053, or by e-mail.

Exercise 1: Variable initialization 6 Points

Extend the translation function code to initialization constructions, such as int x = 5.
If no initializer is given, then you should set the variable to its null value, i.e., set the
entire allocated area to zeroes. Structs and arrays initializers are given as a list of constant
expressions, e.g., int a[3] = {1, 2, 4}.

Exercise 2: Break and Continue 4 Points

Modify the scheme for translation of loops, to take care of the break statement, for
the immediate termination of a loop, and continue statements for skipping to the next
iteration of the loop. For this purpose, you may wish to extend the code generation
function to take a further argument, a pair of labels (lb, lc), which characterize the labels
that exit and continue the loop. Your solution need only give the translation function for
one of the looping constructs, e.g., the while-statment.

Exercise 3: Code generation: Function calls 8 Points

Generate the code for the following. Make sure it runs on the CMa of the VAM system.
It should run for a fairly long time, 111 recursive calls. Send the solution by e-mail as a
nicely commented .cma file.

int f(int n) {

if (n % 2 == 0) return n/2;

else return (3*n + 1);

}

int c(n) {

if (n <= 1) return 1;

else return c(f(n));

}

int main() {

c(27);

}



Exercise 4: Call-by-name 6 Points

Change the way paramters, even integers, are passed to procedures to adopt a call-by-
name translation scheme. This is how reference types in C++ and non-primitive types in
Java are handled. Consider the following example:

int x;

int f(int i) {

i = 27;

}

int main() {

f(x);

}

The value of x should be 27 after the function call.

a) Give the translation-scheme for function calls.

b) Write a VAM executable .cma file for this example using your new translation func-
tion.

Exercise 5: Varargs No Points

Try to come up with a scheme to translate variadic functions, such as the one in the
following piece of C code.

#include<stdio.h>

#include<stdarg.h>

double avg(int n, ...) {

double sum = 0;

int i = 0;

va_list e;

va_start(e, n);

while (i++ < n)

sum += va_arg(e, int);

va_end(e);

return (sum/n);

}

int main() {

printf("%f\n", avg(3, 1,3,7));

return 0;

}

This is for discussion during the lab, it is not graded.


