
Technische Universität München

Fakultät für Informatik

Prof. Dr. H. Seidl

Summer Semester 08

K N Verma

verma@in.tum.de

Virtual Machines

Exercise Sheet 7

Deadline: 10 June 2008, during lecture, by email, or in room 02.07.041

Exercise 1:

10 Points

Have a look at the code generated for the expression e ≡ (a + a) with ρ = {a 7→ (L, 1)}
and sd = 1. It was created using the Call by Need strategy.

codeV e ρ 1 = getvar a ρ 1 = 1 pushloc 0
eval 2 eval
getbasic 2 getbasic
getvar a ρ 2 2 pushloc 1
eval 3 eval
getbasic 3 getbasic
add 3 add
mkbasic 2 mkbasic

The eval instructions check whether the value of a has been computed. If not, a still has
to be evaluated. The second occurrence of eval in the above code is redundant, because
the value of a is already known at this point.

The code generation functions can be modified such that redundant eval instructions are
not generated any more. To do so, extend the code generation function for an expression
e with an additional argument A. A collects the set of visible variables that are bound
outside e and that have always been evaluated when reaching the code to be generated
for e.

Thus the code generation scheme for variable access shall look as follows:

codeV x ρ sd A =















getvar x ρ sd , if x ∈ A

getvar x ρ sd

eval , otherwise

For example:

codeV (e1 �2 e2) ρ sd A = codeB e1 ρ sd A

codeB e2 ρ (sd + 1) A∪A[e1]
op

2
; mkbasic

where A[e1] is the set of free variables in the expression e1 which already must have been
evaluated in order to evaluate e1.

a) Define formally A[e], where e is a PuF expression.

b) Modify the code generation functions for PuF expressions in order to get rid of
redundant eval instructions.

Exercise 2:

10 Points

Extend PuF with type Tree. Trees are constructed using the nullary constructor (constant)
LEAF and the 3-ary constructor NODE. NODE constructs a Tree value from an arbitrary
value and two Tree values. The syntax of expressions e is extended with:

e ::= . . . | LEAF | NODE(e1, e2, e3)

| (case e0 of LEAF → e1; NODE(info, left, right) → e2)

Define code generation functions for the new expressions. Extend the set of heap objects
with new objects of type Tree. You may define new MaMa instructions.

