Virtual Machines

Exercise Sheet 8

Deadline: 17 June 2008, during lecture, by email, or in room 02.07.041 Exercise 1:

10 Points
The following is the straightforward method of computing Fibonacci numbers using a recursive function.

```
letrec fib = fn x => if x <= 1 then 1 else (fib (x-1)) + (fib (x-2))
in fib 4
```

The following example shows how to accomplish the same using a tail-recursive function.

```
letrec fib_aux = fn n, next, result => if n <= 1 then result
    else (fib_aux (n-1) next + result, next);
    fib_main = fn n => (fib_aux n 2 1)
in fib_main 4
```

Generate code_{V} for this new expression with $s d=0$ and $\rho=\{ \}$ using CBV.
Exercise 2:
6 Points
Write a prolog program including following predicates:
a) last/2 where the first parameter is a list and the second one is the last element of this list (e.g. last([1,2,3],3)).
b) reverse/2 with two lists as parameters, where one is the reverse list of the other.
(e.g. reverse([1,2,3],[3,2,1]))
c) chain/2 with two lists, where the first list includes the second one as connected chain.
(e.g. chain $([1,2,3,4,5,6],[2,3,4]))$

Note: You can write auxiliary predicates if needed.

Exercise 3:

4 Points
Produce $\operatorname{code}_{A} / \operatorname{code}_{G}$ for the following terms/goals !
a) $f(X, g(b, Y), g(\bar{X}, \bar{Z}))$
b) $p\left(f\left(g\left(X, h\left(\bar{Y}, _\right), b\right), Z\right)\right)$

Use the following address environment: $\rho=\{X \mapsto 1, Y \mapsto 2, Z \mapsto 3\}$!

