24 Structured Data

In the following, we extend our functional programming language by some datatypes.

24.1 Tuples

Constructors: (.,...,.), k-ary with $k \geq 0$;
Destructors: $\quad \# j$ for $j \in \mathbb{N}_{0} \quad$ (Projections)
We extend the syntax of expressions correspondingly:

$$
\begin{aligned}
e::= & \ldots\left|\left(e_{0}, \ldots, e_{k-1}\right)\right| \# j e \\
& \mid \operatorname{let}\left(x_{0}, \ldots, x_{k-1}\right)=e_{1} \text { in } e_{0}
\end{aligned}
$$

- In order to construct a tuple, we collect sequence of references on the stack. Then we construct a vector of these references in the heap using mkvec
- For returning components we use an indexed access into the tuple.

$$
\begin{aligned}
\operatorname{code}_{V}\left(e_{0}, \ldots, e_{k-1}\right) \rho \mathrm{sd}= & \operatorname{code}_{C} e_{0} \rho \mathrm{sd} \\
& \operatorname{code}_{C} e_{1} \rho(\mathrm{sd}+1) \\
& \ldots \\
& \operatorname{code}_{C} e_{k-1} \rho(\mathrm{sd}+k-1) \\
& \mathrm{mkvec}^{\mathrm{k}} \\
\operatorname{code}_{V}(\# j e) \rho \mathrm{sd}= & \operatorname{code}_{V} e \rho \mathrm{sd} \\
& \operatorname{getj} \\
& \text { eval }
\end{aligned}
$$

In the case of CBV, we directly compute the values of the e_{i}.

Inversion: Accessing all components of a tuple simulataneously:

$$
e \equiv \operatorname{let}\left(y_{0}, \ldots, y_{k-1}\right)=e_{1} \text { in } e_{0}
$$

This is translated as follows:

$$
\begin{aligned}
\operatorname{code}_{V} e \rho \mathrm{sd}= & \operatorname{code}_{V} e_{1} \rho \mathrm{sd} \\
& \text { getvec } \mathrm{k} \\
& \operatorname{code}_{V} e_{0} \rho^{\prime}(\mathrm{sd}+k) \\
& \text { slide k }
\end{aligned}
$$

where $\quad \rho^{\prime}=\rho \oplus\left\{y_{i} \mapsto(L, s d+i) \mid i=0, \ldots, k-1\right\}$.
The instruction getvec k pushes the components of a vector of length k onto the stack:

24.2 Lists

Lists are constructed by the constructors:
[] "Nil", the empty list;
":" "Cons", right-associative, takes an element and a list.

Access to list components is possible by case-expressions ...

Example: The append function app:

$$
\begin{aligned}
\text { app }=\mathbf{f n} l, y \Rightarrow \text { case } l \mathbf{o f} & \\
{[] } & \rightarrow y \\
h: t & \rightarrow h:(\operatorname{app} t y)
\end{aligned}
$$

accordingly, we extend the syntax of expressions:

$$
\begin{aligned}
e::= & \ldots|[]|\left(e_{1}: e_{2}\right) \\
& \mid\left(\operatorname{case} e_{0} \text { of }[] \rightarrow e_{1} ; h: t \rightarrow e_{2}\right)
\end{aligned}
$$

Additionally, we need new heap objects:

24.3 Building Lists

The new instructions nil and cons are introduced for building list nodes. We translate for CBN:

$$
\begin{aligned}
\operatorname{code}_{V}[] \rho \mathrm{sd}= & \text { nil } \\
\operatorname{code}_{V}\left(e_{1}: e_{2}\right) \rho \mathrm{sd}= & \operatorname{code}_{C} e_{1} \rho \mathrm{sd} \\
& \operatorname{code}_{C} e_{2} \rho(\mathrm{sd}+1) \\
& \text { cons }
\end{aligned}
$$

Note:

- With CBN: Closures are constructed for the arguments of ":";
- With CBV: Arguments of ":" are evaluated :-)

S[SP-1] = new (L,Cons, S[SP-1], S[SP]); SP- -;

24.4 Pattern Matching

Consider the expression $e \equiv$ case e_{0} of []$\rightarrow e_{1} ; h: t \rightarrow e_{2}$.

Evaluation of e requires:

- evaluation of e_{0};
- check, whether resulting value v is an L-object;
- if v is the empty list, evaluation of $e_{1} \ldots$
- otherwise storing the two references of v on the stack and evaluation of e_{2}. This corresponds to binding h and t to the two components of v.

In consequence, we obtain (for CBN as for CBV):

$$
\begin{aligned}
& \operatorname{code}_{V} e \rho \mathrm{sd}=\quad \operatorname{code}_{V} e_{0} \rho \mathrm{sd} \\
& \text { tlist } \mathrm{A} \\
& \operatorname{code}_{V} e_{1} \rho \mathrm{sd} \\
& \operatorname{jump~B~}^{2} \\
& \mathrm{~A}: \quad \operatorname{code}_{V} e_{2} \rho^{\prime}(\mathrm{sd}+2) \\
& \text { slide } 2 \\
& \mathrm{~B}: \quad \ldots
\end{aligned}
$$

where $\quad \rho^{\prime}=\rho \oplus\{h \mapsto(L, s d+1), t \mapsto(L, s d+2)\}$.

The new instruction tlist A does the necessary checks and (in the case of Cons) allocates two new local variables:


```
h = S[SP];
if (H[h] != (L,...)
    Error "no list!";
if (H[h] == (_,Nil)) SP- -;
```


$$
\begin{aligned}
& \ldots \text { else }\{ \\
& \mathrm{S}[\mathrm{SP}+1]=\mathrm{S}[\mathrm{SP}] \rightarrow \mathrm{S}[1] ; \\
& \mathrm{S}[\mathrm{SP}]=\mathrm{S}[\mathrm{SP}] \rightarrow \mathrm{S}[0] ; \\
& \mathrm{SP}++; \mathrm{PC}=\mathrm{A} ;
\end{aligned}
$$

Example: The (disentangled) body of the function app with app $\mapsto(G, 0):$

0	targ 2	3	pushglob 0	0	C:	mark D
0	pushloc 0	4	pushloc 2	3		pushglob 2
1	eval	5	pushloc 6	4		pushglob 1
1	tlist A	6	mkvec 3	5		pushglob 0
0	pushloc 1	4	mkclos C	6	eval	
1	eval	4		cons	6	
1	jump B	0		slide 2	1	D:
upply						
2	A:	pushloc 1	3	B:	return 2	

Note:

Datatypes with more than two constructors need a generalization of the tlist instruction, corresponding to a switch-instruction :-)

24.5 Closures of Tuples and Lists

The general schema for code $_{C}$ can be optimized for tuples and lists:

```
\(\operatorname{code}_{C}\left(e_{0}, \ldots, e_{k-1}\right) \rho \mathrm{sd}=\operatorname{code}_{V}\left(e_{0}, \ldots, e_{k-1}\right) \rho \mathrm{sd}=\operatorname{code}_{C} e_{0} \rho \mathrm{sd}\)
                                    \(\operatorname{code}_{C} e_{1} \rho(\mathrm{sd}+1)\)
                                    \(\operatorname{code}_{C} e_{k-1} \rho(\mathrm{sd}+k-1)\)
                                    mkvec k
\(\operatorname{code}_{C}[] \rho\) sd \(\quad=\operatorname{code}_{V}[] \rho \mathrm{sd}\)
\(=\) nil
\(\operatorname{code}_{C}\left(e_{1}: e_{2}\right) \rho \mathrm{sd} \quad=\operatorname{code}_{V}\left(e_{1}: e_{2}\right) \rho \mathrm{sd}\)
\(=\operatorname{code}_{C} e_{1} \rho \mathrm{sd}\)
\(\operatorname{code}_{C} e_{2} \rho(\mathrm{sd}+1)\)
cons
```


25 Last Calls

A function application is called last call in an expression e if this application could deliver the value for e.

A last call usually is the outermost application of a defining expression.
A function definition is called tail recursive if all recursive calls are last calls.

Examples:

$$
\begin{array}{ll}
r t(h: y) \text { is a last call in } & \text { case } x \text { of }[] \rightarrow y ; h: t \rightarrow r t(h: y) \\
f(x-1) \text { is not a last call in } & \text { if } x \leq 1 \text { then } 1 \text { else } x * f(x-1)
\end{array}
$$

Observation: Last calls in a function body need no new stack frame!
\qquad
Automatic transformation of tail recursion into loops!!!

The code for a last call $l \equiv\left(e^{\prime} e_{0} \ldots e_{m_{1}}\right)$ inside a function f with k arguments must

1. allocate the arguments e_{i} and evaluate e^{\prime} to a function (note: all this inside f^{\prime} s frame!);
2. deallocate the local variables and the k consumed arguments of f;
3. execute an apply.

$$
\begin{aligned}
\operatorname{code}_{V} l \rho \mathrm{sd}= & \operatorname{code}_{C} e_{m-1} \rho \mathrm{sd} \\
& \operatorname{code}_{C} e_{m-2} \rho(\mathrm{sd}+1) \\
& \ldots \\
& \operatorname{code}_{C} e_{0} \rho(\mathrm{sd}+m-1) \\
& \operatorname{code}_{V} e^{\prime} \rho(\mathrm{sd}+m) \\
& \text { move } r(m+1) \\
& \text { apply }
\end{aligned}
$$

where $r=s d+k$ is the number of stack cells to deallocate.

Example:

The body of the function

$$
r=\mathbf{f n} x, y \Rightarrow \text { case } x \text { of }[] \rightarrow y ; h: t \rightarrow r t(h: y)
$$

0	$\operatorname{targ} 2$	1		jump B	4
0	pushloc 0				pushglob 0
1	eval	2	A:	pushloc 1	5
1	tlist A	3		pushloc 4	
0	pushloc 1	4	cons		move 4 3
1	eval	3	pushloc 1	1	B:
apply					
return 2					

Since the old stack frame is kept, return 2 will only be reached by the direct jump at the end of the []-alternative.

move r k

$$
\begin{aligned}
& \mathrm{SP}=\mathrm{SP}-\mathrm{k}-\mathrm{r} ; \\
& \text { for }(\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{k} ; \mathrm{i}++) \\
& \quad \mathrm{S}[\mathrm{SP}+\mathrm{i}]=\mathrm{S}[\mathrm{SP}+\mathrm{i}+\mathrm{r}] ; \\
& \mathrm{SP}=\mathrm{SP}+\mathrm{k} ;
\end{aligned}
$$

