
The Translation of Logic
Languages

225

26 The Language Proll

Here, we just consider the core language Proll (“Prolog-light” :-). In particular,

we omit:

• arithmetic;

• the cut operator;

• self-modification of programs through assert and retract.

226

Example:

bigger(X, Y) ← X = elephant, Y = horse

bigger(X, Y) ← X = horse, Y = donkey

bigger(X, Y) ← X = donkey, Y = dog

bigger(X, Y) ← X = donkey, Y = monkey

is_bigger(X, Y) ← bigger(X, Y)

is_bigger(X, Y) ← bigger(X, Z), is_bigger(Z, Y)

? is_bigger(elephant, dog)

227

A More Realistic Example:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

? app(X, [Y, c], [a, b, Z])

Remark

[] === the atom “empty list”

[H|Z] === binary constructor application

[a, b, Z] === shortcut for: [a|[b|[Z|[]]]]

228

A More Realistic Example:

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X′], Z = [H|Z′], app(X′, Y, Z′)

? app(X, [Y, c], [a, b, Z])

Remark:

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === shortcut for: [a|[b|[Z|[]]]]

229

A program p is constructed as follows:

t ::= a | X | __ | f (t1, . . . , tn)

g ::= p(t1, . . . , tk) | X = t

c ::= p(X1, . . . , Xk)← g1, . . . , gr

p ::= c1cm?g

• A term t either is an atom, a variable, an anonymous variable or a

constructor application.

• A goal g either is a literal, i.e., a predicate call, or a unification.

• A clause c consists of a head p(X1, . . . , Xk) with predicate name and list of

formal parameters together with a body, i.e., a sequence of goals.

• A program consists of a sequence of clauses together with a single goal as

query.

230

Procedural View of Proll programs:

goal === procedure call

predicate === procedure

body === definition

term === value

unification === basic computation step

binding of variables === side effect

Note: Predicate calls ...

• ... do not have a return value.

• ... affect the caller through side effects only :-)

• ... may fail. Then the next definition is tried :-))

==⇒ backtracking

231

27 Architecture of the WiM:

The Code Store:

0 1 PC

C

C = Code store – contains WiM program;

every cell contains one instruction;

PC = Program Counter – points to the next instruction to executed;

232

The Runtime Stack:

0 SP

FP

S

S = Runtime Stack – every cell may contain a value or an address;

SP = Stack Pointer – points to the topmost occupied cell;

FP = Frame Pointer – points to the current stack frame.

Frames are created for predicate calls,

contain cells for each variable of the current clause

233

The Heap:

0 1

H

HP

H = Heap for dynamicly constructed terms;

HP = Heap-Pointer – points to the first free cell;

• The heap is maintained like a stack as well :-)

• A new-instruction allocates an object in H.

• Objects are tagged with their types (as in the MaMa) ...

234

S f/n

R

A

R

a 1 cell

1 cell

1 cell

(n+1) cellsstructure

unbound variable

variable

atom

235

28 Construction of Terms in the Heap

Parameter terms of goals (calls) are constructed in the heap before passing.

Assume that the address environment ρ returns, for each clause variable X its

address (relative to FP) on the stack. Then codeA t ρ should ...

• construct (a presentation of) t in the heap; and

• return a reference to it on top of the stack.

Idea:

• Construct the tree during a post-order traversal of t

• with one instruction for each new node!

Example: t ≡ f (g(X, Y), a, Z).

Assume that X is initialized, i.e., S[FP + ρ X] contains already a reference,

Y and Z are not yet initialized.

236

Representing t ≡ f (g(X, Y), a, Z) :

A a

R

S f/3f/3S

S g/2

R

R

reference to X

237

For a distinction, we mark occurrences of already initialized variables through

over-lining (e.g. X̄).

Note: Arguments are always initialized!

Then we define:

codeA a ρ = putatom a codeA f (t1, . . . , tn)ρ = codeA t1 ρ

codeA X ρ = putvar (ρ X) . . .

codeA X̄ ρ = putref (ρ X) codeA tn ρ

codeA __ρ = putanon putstruct f/n

For f (g(X, Y), a, Z) and ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3

238

For a distinction, we mark occurrences of already initialized variables through

over-lining (e.g. X̄).

Note: Arguments are always initialized!

Then we define:

codeA a ρ = putatom a codeA f (t1, . . . , tn)ρ = codeA t1 ρ

codeA X ρ = putvar (ρ X) . . .

codeA X̄ ρ = putref (ρ X) codeA tn ρ

codeA __ρ = putanon putstruct f/n

For f (g(X, Y), a, Z) and ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3} this results in the sequence:

putref 1 putatom a

putvar 2 putvar 3

putstruct g/2 putstruct f/3

239

The instruction putatom a constructs an atom in the heap:

A a
putatom a

SP++; S[SP] = new (A,a);

240

The instruction putvar i introduces a new unbound variable and

additionally initializes the corresponding cell in the stack frame:

FP

i

FP

R
putvar i

SP = SP + 1;
S[SP] = new (R, HP);
S[FP + i] = S[SP];

241

The instruction putanon introduces a new unbound variable but does not

store a reference to it in the stack frame:

FPFP

R
putanon

SP = SP + 1;
S[SP] = new (R, HP);

242

The instruction putref i pushes the value of the variable onto the stack:

FP FP

i

putref i

SP = SP + 1;
S[SP] = deref S[FP + i];

The run-time function deref contracts chains of references:

ref deref (ref v) {

if (H[v]==(R,w) && v!=w) return deref (w);

else return v;

}

243

The instruction putref i pushes the value of the variable onto the stack:

FP FP

i

putref i

SP = SP + 1;
S[SP] = deref S[FP + i];

The auxiliary function deref contracts chains of references:

ref deref (ref v) {

if (H[v]==(R,w) && v!=w) return deref (w);

else return v;

}

244

The instruction putstruct i builds a constructor application in the heap:

n putstruct f/n

f/nS

v = new (S, f, n);
SP = SP - n + 1;

H[v + i] = S[SP + i -1];
S[SP] = v;

for (i=1; i<=n; i++)

245

Remarks:

• The instruction putref i does not just push the reference from S[FP + i] onto

the stack, but also dereferences it as much as possible

==⇒ maximal contraction of reference chains.

• In constructed terms, references always point to smaller heap addresses.

Also otherwise, this will be often the case. Sadly enough, it cannot be

guaranteed in general :-(

246

29 The Translation of Literals (Goals)

Idea:

• Literals are treated as procedure calls.

• We first allocate a stack frame.

• Then we construct the actual parameters (in the heap)

• ... and store references to these into the stack frame.

• Finally, we jump to the code for the procedure/predicate.

247

codeG p(t1, . . . , tk) ρ = mark B // allocates the stack frame

codeA t1 ρ

. . .

codeA tk ρ

call p/k // calls the procedure p/k

B : ...

Example: p(a, X, g(X̄, Y)) with ρ = {X 7→ 1, Y 7→ 2}

We obtain:

mark B putref 1 call p/3

putatom a putvar 2 B: ...

putvar 1 putstruct g/2

248

codeG p(t1, . . . , tk) ρ = mark B // allocates the stack frame

codeA t1 ρ

. . .

codeA tk ρ

call p/k // calls the procedure p/k

B : ...

Example: p(a, X, g(X̄, Y)) with ρ = {X 7→ 1, Y 7→ 2}

We obtain:

mark B putref 1 call p/3

putatom a putvar 2 B: ...

putvar 1 putstruct g/2

249

Stack Frame of the WiM:

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

FPold

posCont.FP

SP

0

-4

-5

-1

-2

-3

local stack

local variables

6 org. cells

250

Remarks:

• The positive continuation address records where to continue after successful

treatment of the goal.

• Additional organizational cells are needed for the implementation of

backtracking

==⇒ will be discussed at the translation of predicates.

251

The instruction mark B allocates a new stack frame:

B

mark B

FP FP

S[SP] = B; S[SP-1] = FP;
SP = SP + 6;

252

The instruction call p/n calls the n-ary predicate p :

p/n

call p/n

FP

PC = p/n;
FP = SP - n;

n

PC PC

253

30 Unification

Convention:

• By X̃, we denote an occurrence of X;

it will be translated differently depending on whether the variable is

initialized or not.

• We introduce the macro put X̃ ρ :

put X ρ = putvar (ρ X)

put __ ρ = putanon

put X̄ ρ = putref (ρ X)

254

Let us translate the unification X̃ = t .

Idea 1:

• Push a reference to (the binding of) X onto the stack;

• Construct the term t in the heap;

• Invent a new instruction implementing the unification :-)

codeG (X̃ = t) ρ = put X̃ ρ

codeA t ρ

unify

255

Let us translate the unification X̃ = t .

Idea 1:

• Push a reference to (the binding of) X onto the stack;

• Construct the term t in the heap;

• Invent a new instruction implementing the unification :-)

codeG (X̃ = t) ρ = put X̃ ρ

codeA t ρ

unify

256

Example:

Consider the equation:

Ū = f (g(X̄, Y), a, Z)

Then we obtain for an address environment

ρ = {X 7→ 1, Y 7→ 2, Z 7→ 3, U 7→ 4}

putref 4 putref 1 putatom a unify

putvar 2 putvar 3

putstruct g/2 putstruct f/3

257

The instruction unify calls the run-time function unify() for the

topmost two references:

unify

SP = SP–2;
unify (S[SP-1], S[SP]);

258

The Function unify()

• ... takes two heap addresses.

For each call, we guarantee that these are maximally de-referenced.

• ... checks whether the two addresses are already identical.

If so, does nothing :-)

• ... binds younger variables (larger addresses) to older variables (smaller

addresses);

• ... when binding a variable to a term, checks whether the variable occurs

inside the term ==⇒ occur-check;

• ... records newly created bindings;

• ... may fail. Then backtracking is initiated.

259

bool unify (ref u, ref v) {

if (u == v) return true;

if (H[u] == (R,_)) {

if (H[v] == (R,_)) {

if (u>v) {

H[u] = (R,v); trail (u); return true;

} else {

H[v] = (R,u); trail (v); return true;

}

} elseif (check (u,v)) {

H[u] = (R,v); trail (u); return true;

} else {

backtrack(); return false;

}

}

...

260

...

if ((H[v] == (R,_)) {

if (check (v,u)) {

H[v] = (R,u); trail (v); return true;

} else {

backtrack(); return false;

}

}

if (H[u]==(A,a) && H[v]==(A,a))

return true;

if (H[u]==(S, f/n) && H[v]==(S, f/n)) {

for (int i=1; i<=n; i++)

if(!unify (deref (H[u+i]), deref (H[v+i])) return false;

return true;

}

backtrack(); return false;

}

261

R

A a

S f/2S f/2

S f/2S f/2

R

R R

262

R

A a

R

R R

S f/2S f/2

S f/2S f/2

263

R

A a

R

R R

S f/2S f/2

S f/2S f/2

264

R

A a

R

R

S f/2S f/2

S f/2S f/2

R

265

A a

R

R

S f/2S f/2

S f/2S f/2

R

R

266

• The run-time function trail() records the a potential new binding.

• The run-time function backtrack() initiates backtracking.

• The auxiliary function check() performs the occur-check: it tests

whether a variable (the first argument) occurs inside a term (the second

argument).

• Often, this check is skipped, i.e.,

bool check (ref u, ref v) { return true;}

267

Otherwise, we could implement the run-time function check() as follows:

bool check (ref u, ref v) {

if (u == v) return false;

if (H[v] == (S, f/n)) {

for (int i=1; i<=n; i++)

if (!check(u, deref (H[v+i])))

return false;

return true;

}

268

