37 Extension: The Cut Operator

Realistic Prolog additionally provides an operator "!" (cut) which explicitly allows to prune the search space of backtracking.

Example:

$$\begin{aligned} \mathsf{branch}(X,Y) &\leftarrow& \mathsf{p}(X),!,\mathsf{q}_1(X,Y) \\ \mathsf{branch}(X,Y) &\leftarrow& \mathsf{q}_2(X,Y) \end{aligned}$$

Once the queries before the cut have succeeded, the choice is committed:

Backtracking will return only to backtrack points preceding the call to the left-hand side ...

The Basic Idea:

- We restore the oldBP from our current stack frame;
- We pop all stack frames on top of the local variables.

Accordingly, we translate the cut into the sequence:

prune pushenv m

where m is the number of (still used) local variables of the clause.

Example:

Consider our example:

$$\begin{aligned} \mathsf{branch}(X,Y) &\leftarrow& \mathsf{p}(X),!,\mathsf{q}_1(X,Y) \\ \mathsf{branch}(X,Y) &\leftarrow& \mathsf{q}_2(X,Y) \end{aligned}$$

We obtain:

setbtp	A:	pushenv 2	C:	prune	lastmark	B:	pushenv 2
try A		mark C		pushenv 2	putref 1		putref 2
delbtp		putref 1			putref 2		putref 2
jump B		call p/1			lastcall $q_1/22$		move 2 2
							jump $q_2/2$

Example:

Consider our example:

$$\begin{aligned} \mathsf{branch}(X,Y) &\leftarrow& \mathsf{p}(X),!,\mathsf{q}_1(X,Y) \\ \mathsf{branch}(X,Y) &\leftarrow& \mathsf{q}_2(X,Y) \end{aligned}$$

In fact, an optimized translation even yields here:

setbtp	A:	pushenv 2	C:	prune	putref 1	B:	pushenv 2
try A		mark C		pushenv 2	putref 2		putref 1
delbtp		putref 1			move 2 2		putref 2
jump B		call p/1			jump $q_1/2$		move 2 2
							jump $q_2/2$

The new instruction **prune** simply restores the backtrack pointer:

$$BP = BPold;$$

Problem:

If a clause is single, then (at least so far ;-) we have not stored the old BP inside the stack frame :-(

For the cut to work also with single-clause predicates or try chains of length 1, we insert an extra instruction setcut before the clausal code (or the jump):

The instruction setcut just stores the current value of BP:

$$BPold = BP;$$

The Final Example: Negation by Failure

The predicate notP should succeed whenever p fails (and vice versa:-)

$$\begin{array}{ccc} \mathsf{notP}(X) & \leftarrow & \mathsf{p}(X), !, \mathsf{fail} \\ \mathsf{notP}(X) & \leftarrow & \end{array}$$

where the goal fail never succeeds. Then we obtain for notP:

38 Garbage Collection

- Both during execution of a MaMa- as well as a WiM-programs, it may happen that some objects can no longer be reached through references.
- Obviously, they cannot affect the further program execution. Therefore, these objects are called garbage.
- Their storage space should be freed and reused for the creation of other objects.

Warning:

The WiM provides some kind of heap de-allocation. This, however, only frees the storage of failed alternatives !!!

Operation of a stop-and-copy-Collector:

- Division of the heap into two parts, the to-space and the from-space which, after each collection flip their roles.
- Allocation with new in the current from-space.
- In case of memory exhaustion, call of the collector.

The Phases of the Collection:

- 1. Marking of all reachable objects in the from-space.
- 2. Copying of all marked objects into the to-space.
- 3. Correction of references.
- 4. Exchange of from-space and to-space.

- (1) Mark: Detection of live objects:
 - all references in the stack point to live objects;
 - every reference of a live object points to a live object.

 \longrightarrow

Graph Reachability

- **(2) Copy:** Copying of all live objects from the current from-space into the current to-space. This means for every detected object:
 - Copying the object;
 - Storing a forward reference to the new place at the old place :-)

all references of the copied objects point to the forward references in the from-space.

(3) Traversing of the to-space in order to correct the references.

(4) Exchange of to-space and from-space.

Warning:

The garbage collection of the WiM must harmonize with backtracking. This means:

- The relative position of heap objects must not change during copying :-!!
- The heap references in the trail must be updated to the new positions.

Threads

39 The Language ThreadedC

We extend C by a simple thread concept. In particular, we provide functions for:

- generating new threads: create();
- terminating a thread: exit();
- waiting for termination of a thread: join();
- mutual exclusion: lock(), unlock(); ...

In order to enable a parallel program execution, we extend the abstract machine (what else? :-)

40 Storage Organization

All threads share the same common code store and heap:

... similar to the CMa, we have:

```
    C = Code Store – contains the CMa program;
    every cell contains one instruction;
    PC = Program-Counter – points to the next executable instruction;
    H = Heap –
    every cell may contain a base value or an address;
    the globals are stored at the bottom;
    NP = New-Pointer – points to the first free cell.
```

For a simplification, we assume that the heap is stored in a separate segment. The function malloc() then fails whenever NP exceeds the topmost border.

Every thread on the other hand needs its own stack:

In constrast to the CMa, we have:

```
SSet = Set of Stacks – contains the stacks of the threads;
every cell may contain a base value of an address;

S = common address space for heap and the stacks;

SP = Stack-Pointer – points to the current topmost ocupied stack cell;

FP = Frame-Pointer – points to the current stack frame.
```

Warning:

- If all references pointed into the heap, we could use separate address spaces for each stack.
 - Besides SP and FP, we would have to record the number of the current stack :-)
- In the case of C, though, we must assume that all storage reagions live within the same address space only at different locations :-)

 SP and FP then uniquely identify storage locations.
- For simplicity, we omit the extreme-pointer EP.

41 The Ready-Queue

Idea:

- Every thread has a unique number tid.
- A table TTab allows to determine for every tid the corresponding thread.
- At every point in time, there can be several executable threads, but only one running thread (per processor :-)
- The tid of the currently running thread is kept in the register CT (Current Thread).
- The function: **tid self ()** returns the **tid** of the current thread. Accordingly:

$$code_R$$
 self () ρ = **self**

... where the instruction self pushes the content of the register CT onto the (current) stack:

- The remaining executable threads (more precisely, their tid's) are maintained in the queue RQ (Ready-Queue).
- For queues, we need the functions:

```
void enqueue (queue q, tid t), tid dequeue (queue q)
```

which insert a tid into a queue and return the first one, respectively ...

If a call to dequeue () failed, it returns a value < 0:-)

The thread table must contain for every thread, all information which is needed for its execution. In particular it consists of the registers PC, SP und FP:

Interrupting the current thread therefore requires to save these registers:

```
void save () {
    TTab[CT][0] = FP;
    TTab[CT][1] = PC;
    TTab[CT][2] = SP;
}
```

Analogously, we restore these registers by calling the function:

```
void restore () {
    FP = TTab[CT][0];
    PC = TTab[CT][1];
    SP = TTab[CT][2];
}
```

Thus, we can realize an instruction yield which causes a thread-switch:

```
tid ct = dequeue ( RQ ); if (ct \geq 0) { save (); enqueue ( RQ, CT ); CT = ct; restore (); }
```

Only if the ready-queue is non-empty, the current thread is replaced :-)

42 Switching between Threads

Problem:

We want to give each executable thread a fair chance to be completed.

 \longrightarrow

- Every thread must former or later be scheduled for running.
- Every thread must former or later be interrupted.

Possible Strategies:

- Thread switch only at explicit calls to a function yield() :-(
- Thread switch after every instruction \implies too expensive :-(
- Thread switch after a fixed number of steps \implies we must install a counter and execute yield at dynamically chosen points :-(

We insert thread switches at selected program points ...

- at the beginning of function bodies;
- before every jump whose target does not exceed the current PC ...

```
=== rare :-))
```

The modified scheme for loops $s \equiv \mathbf{while}(e) s$ then yields:

```
\operatorname{code} s \rho = A : \operatorname{code}_{\mathbb{R}} e \rho
\operatorname{jumpz} B
\operatorname{code} s \rho
\operatorname{yield}
\operatorname{jump} A
B : \dots
```

Note:

- **If-then-else-**Statements do not necessarily contain thread switches.
- **do-while-**Loops require a thread switch at the end of the condition.
- Every loop should contain (at least) one thread switch :-)
- Loop-unroling reduces the number of thread switches.
- At the translation of **switch**-statements, we created a jump table behind the code for the alternatives. Nonetheless, we can avoid thread switches here.
- At freely programmed uses of jumpi as well as jumpz we should also insert thread switches before the jump (or at the jump target).
- If we want to reduce the number of executed thread switches even further, we could switch threads, e.g., only at every 100th call of __yield ...

43 Generating New Threads

We assume that the expression: $s \equiv \mathbf{create}(e_0, e_1)$ first evaluates the expressions e_i to the values f, a and then creates a new thread which computes f(a).

If thread creation fails, s returns the value -1.

Otherwise, *s* returns the new thread's tid.

Tasks of the Generated Code:

- Evaluation of the e_i ;
- Allocation of a new run-time stack together with a stack frame for the evaluation of f(a);
- Generation of a new tid;
- Allocation of a new entry in the TTab;
- Insertion of the new tid into the ready-queue.

The translation of *s* then is quite simple:

```
code_R s \rho = code_R e_0 \rho
code_R e_1 \rho
initStack
initThread
```

where we assume the argument value occupies 1 cell :-)

For the implementation of initStack we need a run-time function newStack() which returns a pointer onto the first element of a new stack:

If the creation of a new stack fails, the value 0 is returned.


```
newStack(); if (S[SP]) { S[S[SP]+1] = -1; \\ S[S[SP]+2] = f; \\ S[S[SP]+3] = S[SP-1]; \\ S[SP-1] = S[SP]; SP-- \\ \} \\ else S[SP = SP - 2] = -1;
```

Note:

- The continuation address f points to the (fixed) code for the termination of threads.
- Inside the stack frame, we no longer allocate space for the EP \implies the return value has relative address -2.
- The bottom stack frame can be identified through FPold = -1:-)

In order to create new thread ids, we introduce a new register TC (Thread Count).

Initially, TC has the value 0 (corresponds to the tid of the initial thread).

Before thread creation, TC is incremented by 1.


```
if (S[SP] \ge 0) {
    tid = ++TCount;
    TTab[tid][0] = S[SP]-1;
    TTab[tid][1] = S[SP-1];
    TTab[tid][2] = S[SP];
    S[--SP] = tid;
    enqueue( RQ, tid );
}
```