
44 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways

to terminate a thread:

1. The initial function call has terminated. Then the return value is the return

value of the call.

2. The thread executes the statement exit (e); Then the return value equals

the value of e.

Warning:

• We want to return the return value in the bottom stack cell.

• exit may occur arbitrarily deeply nested inside a recursion. Then we

de-allocate all stack frames ...

• ... and jump to the terminal treatment of threads at address f .
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Therefore, we translate:

code exit (e); ρ = codeR e ρ

exit

term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

while (FP 6= –1) {

SP = FP–2;

FP = S[FP–1];

}

S[SP] = result;
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FP FP −1

exit−1

17

17
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The instruction next activates the next executable thread:

in contrast to yield the current thread is not inserted into RQ .

SP
PC
FP

1313

SP
PC
FP

4

next

CT

RQ

13CT 13

RQ

4

4

39
4
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39
4
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39
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7
2
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2
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If the queue RQ is empty, we additionally terminate the whole program:

if (0 > ct = dequeue( RQ )) halt;

else {

save ();
CT = ct;

restore ();
}
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45 Waiting for Termination

Occaionally, a thread may only continue with its execution, if some other thread

has terminated. For that, we have the expression join (e) where we assume

that e evaluatges to a thread id tid.

• If the thread with the given tid is already terminated, we return its return

value.

• If it is not yet terminated, we interrupt the current thread execution.

• We insert the current thread into the queue of treads already waiting for the

termination.

We save the current registers and switch to the next executable thread.

• Thread waiting for termination are maintained in the table JTab.

• There, we also store the return values of threads :-)
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Example:

CT RQ

JTab

2

0

1

4

3

10

2 3

4

Thread 0 is running, thread 1 could run, threads 2 and 3 wait for the termination

of 1, and thread 4 waits for the termination of 3.
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Thus, we translate:

codeR join (e) ρ = codeR e ρ

join

finalize

... where the instruction join is defined by:

tid = S[SP];

if (TTab[tid][1] ≥ 0) {

enqueue ( JTab[tid], CT );
next

}
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... accordingly:

finalize

SP SP 425

425 425

S[SP] = JTab[tid][1];
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The instruction sequence:

term

next

is executed before a thread is terminated.

Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that,

though,

• ... the last stack frame must be popped and the result be stored in the table

JTab ;

• ... the thread must be marked as terminated, e.g., by additionally setting the

PC to −1;

• ... all threads must be notified which have waited for the termination.

For the instruction term this means:
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PC = –1;

JTab[CT][1] = S[SP];

freeStack(SP);

while (0 ≤ tid = dequeue ( JTab[CT][0] ))
enqueue ( RQ, tid );

The run-time function freeStack (int adr) removes the (one-element) stack at

the location adr :

adr

freeStack(adr)
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46 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the

programmer to dedicate exclusive access to a shared resource (mutual

exclusion).

The datatype supports the following operations:

Mutex ∗ newMutex (); — creates a new mutex;

void lock (Mutex ∗me); — tries to acquire the mutex;

void unlock (Mutex ∗me); — releases the mutex;

Warning:

A thread is only allowed to release a mutex if it has owned it beforehand :-)
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A mutex me consists of:

• the tid of the current owner (or −1 if there is no one);

• the queue BQ of blocked threads which want to acquire the mutex.

1

0

BQ

owner

403



Then we translate:

codeR newMutex () ρ = newMutex

where:

newMutex
−1

404



Then we translate:

code lock (e); ρ = codeR e ρ

lock

where:

lock

17CT 17CT

17−1
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If the mutex is already owned by someone, the current thread is interrupted:

lock

17CT CT
17

55

if (S[S[SP]] < 0) S[S[SP– –]] = CT;

else {

enqueue ( S[SP– –]+1, CT );
next;

}
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Accordingly, we translate:

code unlock (e); ρ = codeR e ρ

unlock

where:

unlock

5CTCT

175

5

17
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If the queue BQ is empty, we release the mutex:

CT CT

unlock

5

5

−1

5

if (S[S[SP]] 6= CT) Error (“Illegal unlock!”);

if (0 > tid = dequeue ( S[SP]+1)) S[S[SP– –]] = –1;

else {

S[S[SP--]] = tid;

enqueue ( RQ, tid );
}
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47 Waiting for Better Wheather

It may happen that a thread owns a mutex but must wait until some extra

condition is true.

Then we want the thread to remain in-active until it is told otherwise.

For that, we use condition variables. A condition variable consists of a queue

WQ of waiting threads :-)

0 WQ
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For condition variables, we introduce the functions:

CondVar ∗ newCondVar (); — creates a new condition variable;

void wait (CondVar ∗ cv, Mutex ∗ me); — enqueues the current thread;

void signal (CondVar ∗ cv); — re-animates one waiting thread;

void broadcast (CondVar ∗ cv); — re-animates all waiting threads.
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Then we translate:

codeR newCondVar () ρ = newCondVar

where:

newCondVar
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After enqueuing the current thread, we release the mutex. After re-animation,

though, we must acquire the mutex again.

Therefore, we translate:

code wait (e0, e1); ρ = codeR e1 ρ

codeR e0 ρ

wait

dup

unlock

next

lock

where ...
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CT CT

wait

5 5

55 5

if (S[S[SP-1]] 6= CT) Error (“Illegal wait!”);

enqueue ( S[SP], CT ); SP--;
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Accordingly, we translate:

code signal (e); ρ = codeR e ρ

signal

signal

RQ RQ

17

17

if (0 ≤ tid = dequeue ( S[SP]))

enqueue ( RQ, tid );
SP--;
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Analogously:

code broadcast (e); ρ = codeR e ρ

broadcast

where the instruction broadcast enqueues all threads from the queue WQ

into the ready-queue RQ :

while (0 ≤ tid = dequeue ( S[SP]))

enqueue ( RQ, tid );
SP--;

Warning:

The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex :-)
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48 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded

number of (identical) resources.

Operations:

Sema ∗ newSema (int n ) — creates a new semaphore;

void Up (Sema ∗ s) — increases the number of free resources;

void Down (Sema ∗ s) — decreases the number of available resources.
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Therefore, a semaphore consists of:

• a counter of type int;

• a mutex for synchronizing the semaphore operations;

• a condition variable.

typedef struct {

Mutex ∗ me;

CondVar ∗ cv;

int count;

} Sema;
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Sema ∗ newSema (int n) {

Sema ∗ s;

s = (Sema ∗) malloc (sizeof (Sema));

s→me = newMutex ();

s→cv = newCondVar ();

s→count = n;

return (s);

}
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The translation of the body amounts to:

alloc 1 newMutex newCondVar loadr 1 loadr 2

loadc 3 loadr 2 loadr 2 loadr 2 storer -2

new store loadc 1 loadc 2 return

storer 2 pop add add

pop store store

pop pop
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The function Down() decrements the counter.

If the counter becomes negative, wait is called:

void Down (Sema ∗ s) {

Mutex ∗me;

me = s→me;

lock (me);

s→count– –;

if (s→count < 0) wait (s→cv,me);

unlock (me);

}
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The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1

loadr 1 add store add

load load loadc 0 load

storer 2 loadc 1 le wait

lock sub jumpz A A: loadr 2

loadr 1 loadr 2 unlock

loadr 1 loadc 2 loadr 1 return
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The function Up() increments the counter again.

If it is afterwards not yet positive, there still must exist waiting threads. One of

these is sent a signal:

void Up (Sema ∗ s) {

Mutex ∗me;

me = s→me;

lock (me);

s→count++;

if (s→count ≤ 0) signal (s→cv);

unlock (me);

}
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The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1

loadr 1 add store add

load load loadc 0 load

storer 2 loadc 1 le signal

lock add jumpz A A: loadr 2

loadr 1 unlock

loadr 1 loadc 2 loadr 1 return
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49 Stack-Management

Problem:

• All threads live within the same storage.

• Every thread requires its own stack (at least conceptually).

1. Idea:

Allocate for each new thread a fixed amount of storage space.

==⇒

Then we implement:

void *newStack() { return malloc(M); }

void freeStack(void *adr) { free(adr); }
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Problem:

• Some threads consume much, some only little stack space.

• The necessary space is statically typically unknown :-(

2. Idea:

• Maintain all stacks in one joint Frame-Heap FH :-)

• Take care that the space inside the stack frame is sufficient at least for the

current function call.

• A global stack-pointer GSP points to the overall topmost stack cell ...
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thread 2

thread 1

GSP

Allocation and de-allocation of a stack frame makes use of the run-time

functions:

int newFrame(int size) {

int result = GSP;

GSP = GSP+size;

return result;

}

void freeFrame(int sp, int size);
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Warning:

The de-allocated block may reside inside the stack :-(

==⇒

We maintain a list of freed stack blocks :-)

0
42
30

19
15

7
6 1

3

This list supports a function

void insertBlock(int max, int min)

which allows to free single blocks.

• If the block is on top of the stack, we pop the stack immediately;

• ... together with the blocks below – given that these have already been

marked as de-allocated.

• If the block is inside the stack, we merge it with neighbored free blocks:
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GSP

freeBlock(...)

GSP
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freeBlock(...)

GSPGSP
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freeBlock(...)

GSPGSP
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Approach:

We allocate a fresh block for every function call ...

Problem:

When ordering the block before the call, we do not yet know the space

consumption of the called function :-(

==⇒ We order the new block after entering the function body!
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SP

Organisational cells as well as actual parameters must be allocated inside the old

block ...
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actual
parameters

SP

When entering the new function, we now allocate the new block ...

and one further line
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FP

actual
parameters

local
variables

SP

Inparticular, the local variables reside in the new block ...

and one further line
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==⇒ We address ...

• the formal parameters relatively to the frame-pointer;

• the local variables relatively to the stack-pointer :-)

==⇒ We must re-organize the complete code generation ... :-(

Alternative: Passing of parameters in registers ... :-)
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SP

argument
registers

The values of the actual parameters are determined before allocation of the new

stack frame.
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argument
registers

actual
parameters

organizational
cells

FP

SP

The complete frame is allocated inside the new block – plus the space for the

current parameters.
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argument
registers

actual
parameters

FP

SP

Inside the new block, though, we must store the old SP (possibly +1) in

order to correctly return the result ... :-)
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3. Idea: Hybrid Solution

• For the first k threads, we allocate a separate stack area.

• For all further threads, we successively use one of the existing ones !!!

==⇒

• For few threads extremely simple and efficient;

• For many threads amortized storage usage :-))
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