44 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways
to terminate a thread:

1. The initial function call has terminated. Then the return value is the return
value of the call.

2. The thread executes the statement exit (¢); Then the return value equals
the value of e.

Warning:
e We want to return the return value in the bottom stack cell.

e exit may occur arbitrarily deeply nested inside a recursion. Then we
de-allocate all stack frames ...

e ... and jump to the terminal treatment of threads at address f

391

Therefore, we translate:

code exit (e); p = coderep
exit
term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];
while (FP # -1) {
SP = FP-2;
FP = S[FP-1];
i

S[SP] = result;

392

FP

17

393

exit

FP

=

The instruction next activates the next executable thread:
in contrast to yield the current thread is not inserted into RO .

RQ RQ
CT[4] [13 CT 13\
SP[5 SP[39
PC|7 next PCl4
FP |2 FP |21

/4 "

4 13\ 39 4 5] 13

4 7
21 2

39

21

394

If the queue RQ is empty, we additionally terminate the whole program:

if (0 > ct = dequeue(RQ)) halt;
else {

save ();

CT =ct;

restore ();

395

45 Waiting for Termination

Occaionally, a thread may only continue with its execution, if some other thread
has terminated. For that, we have the expression join (¢) where we assume
that e evaluatges to a thread id tid.

e If the thread with the given tid is already terminated, we return its return
value.

e If it is not yet terminated, we interrupt the current thread execution.

e We insert the current thread into the queue of treads already waiting for the
termination.

We save the current registers and switch to the next executable thread.
e Thread waiting for termination are maintained in the table JTab.

e There, we also store the return values of threads :-)

396

Example:

JTab 0
1 =73
, CT RO
0 1
3
7
A

Thread 0 is running, thread 1 could run, threads 2 and 3 wait for the termination
of 1, and thread 4 waits for the termination of 3.

397

Thus, we translate:

codeg join (e) p = codeg e p
join
finalize

... where the instruction join is defined by:
tid = S[SP];
if (TTab[tid][1] > 0) {

enqueue (JTab[tid], CT);
next

398

... accordingly:

SP

42

finalize

S[SP] = JTab[tid][1];

399

SP

42

42

The instruction sequence:

term
next

is executed before a thread is terminated.
Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that,
though,

o ... the last stack frame must be popped and the result be stored in the table
JTab ;

e ... the thread must be marked as terminated, e.g., by additionally setting the
PC to —1;

e ... all threads must be notified which have waited for the termination.

For the instruction term this means:

400

PC =-1;

JTab[CT][1] = S[SP];

freeStack(SP);

while (0 < tid = dequeue (JTab[CT][0]))
enqueue (RQ, tid);

The run-time function freeStack (int adr) removes the (one-element) stack at

the location adr:

freeStack(adr)

401

46 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the
programmer to dedicate exclusive access to a shared resource (mutual
exclusion).

The datatype supports the following operations:

Mutex x newMutex (); — creates a new mutex;
void lock (Mutex xme); — tries to acquire the mutex;
void unlock (Mutex xme); — releases the mutex;

Warning:

A thread is only allowed to release a mutex if it has owned it beforehand

402

A mutex me consists of:

e the tid of the current owner (or —1 if there is no one);

e the queue BQ of blocked threads which want to acquire the mutex.

0 owner

403

Then we translate:

codegr newMutex () p = newMutex

where:

newMutex

404

Then we translate:

where:

CT

17

code lock (e); p =

lock

405

codeg e p

lock

CT

17

17

If the mutex is already owned by someone, the current thread is interrupted:

CT

17

] CT]

17

lock

=

if (S[S[SP]] < 0) S[S[SP--]] = CT;
else {
enqueue (S[SP--]+1,CT);
next;

406

Accordingly, we translate:

where:

CT

code unlock (e); p =

17

unlock

407

codeg e p

unlock

CT

17

If the queue BQ is empty, we release the mutex:

CT |5 CT |5

unlock

[—] gy

if (S[S[SP]] # CT) Error (“Illegal unlock!”);
if (0 > tid = dequeue (S[SP]+1)) S[S[SP--]] =-1;
else {

S[S[SP--]] = tid;

enqueue (RQ, tid);

}

408

47 Waiting for Better Wheather

It may happen that a thread owns a mutex but must wait until some extra
condition is true.

Then we want the thread to remain in-active until it is told otherwise.

For that, we use condition variables. A condition variable consists of a queue
WQ of waiting threads :-)

1

i

409

For condition variables, we introduce the functions:

CondVar x newCondVar (); — creates a new condition variable;
void wait (CondVar * cv, Mutex * me); — enqueues the current thread;
void signal (CondVar x cv); — re-animates one waiting thread;

void broadcast (CondVar * cv); — re-animates all waiting threads.

410

Then we translate:

codeg newCondVar () p = newCondVar

where:

newCondVar

411

After enqueuing the current thread, we release the mutex. After re-animation,
though, we must acquire the mutex again.

Therefore, we translate:

code wait (eg,e1); p = codegel p
coder ¢y p
wait
dup
unlock

next

lock

where ...

412

CT

i

=

wait

CT

=

if (S[S[SP-1]] # CT) Error (“Illegal wait!”);
enqueue (S[SP], CT); SP--;

413

Accordingly, we translate:

code signal (e¢); p = coderep
signal
RQ RQ 17
1 1
> 17
] _ .
signal

= =

if (0 < tid = dequeue (S[SP)))
enqueue (RQ, tid);
SP--;

414

Analogously:

code broadcast (e); p = codegep

broadcast

where the instruction broadcast enqueues all threads from the queue WQ
into the ready-queue RQ

while (0 < tid = dequeue (S[SP]))
enqueue (RQ, tid);
SP--;

Warning:
The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex :-)

415

48 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded
number of (identical) resources.

Operations:
Sema * newSema (intn) — creates a new semaphore;
void Up (Sema * S) — increases the number of free resources;

void Down (Sema x S) — decreases the number of available resources.

416

Therefore, a semaphore consists of:
e acounter of type int;
e amutex for synchronizing the semaphore operations;

e a condition variable.

typedef struct {
Mutex * me;
CondVar * cv;
int count;
} Sema;

417

Sema * newSema (int n) {
Sema * s;
s = (Sema x) malloc (sizeof (Sema));
s—me = newMutex ();
s—cv = newCond Var ();
s—count = n;
return (s);

418

The translation of the body amounts to:

alloc 1
loadc 3
new

storer 2

pop

newMutex
loadr 2

store

pop

newCond Var
loadr 2

loadc 1

add

store

pop

419

loadr 1
loadr 2
loadc 2
add

store

pop

loadr 2
storer -2

return

The function Down() decrements the counter.

If the counter becomes negative, wait is called:

void Down (Sema x s) {
Mutex *me;
me = s—me;
lock (me);
s—count——;
if (s—count < 0) wait (s—cv,me);
unlock (me);

420

alloc 1
loadr 1
load
storer 2
lock

loadr 1

loadc 2
add
load
loadc 1
sub
loadr 1
loadc 2

The translation of the body amounts to:

421

add
store
loadc 0

le

jumpz A A:

loadr 2
loadr 1

loadc 1
add
load
wait
loadr 2
unlock

return

The function Up() increments the counter again.

If it is afterwards not yet positive, there still must exist waiting threads. One of
these is sent a signal:

void Up (Sema x s) {
Mutex xme;
me = s—me;
lock (me);
s—count++;
if (s—count < 0) signal (s—cv);
unlock (me);

422

alloc 1
loadr 1
load
storer 2
lock

loadr 1

loadc 2
add
load
loadc 1
add
loadr 1
loadc 2

The translation of the body amounts to:

423

add
store
loadc 0

le

jumpz A

loadr 1

A:

loadc 1
add
load
signal
loadr 2
unlock

return

49 Stack-Management

Problem:

e All threads live within the same storage.

e Every thread requires its own stack (at least conceptually).

1. Idea:

Allocate for each new thread a fixed amount of storage space.

—

Then we implement:

voi d *newStack() { return malloc(M; }
void freeStack(void *adr) { free(adr); }

424

Problem:
e Some threads consume much, some only little stack space.

e The necessary space is statically typically unknown :-(

2. Idea:

e Maintain all stacks in one joint Frame-Heap FH :-)

o Take care that the space inside the stack frame is sufficient at least for the
current function call.

e A global stack-pointer GSP points to the overall topmost stack cell ...

425

GSP e

— thread 1

thread 2 — |

Allocation and de-allocation of a stack frame makes use of the run-time

functions:

int newFrane(int size) {
int result = GSP;

GSP = GSP+si ze;
return result:
}

void freeFrane(int sp, int size);

426

Warning:
The de-allocated block may reside inside the stack :-(

—

We maintain a list of freed stack blocks :-)

42 19
30 15

This list supports a function

= WO

L

voi d insertBlock(int max, int mn)

o

which allows to free single blocks.
e If the block is on top of the stack, we pop the stack immediately;

e ... together with the blocks below — given that these have already been
marked as de-allocated.

e If the block is inside the stack, we merge it with neighbored free blocks:

427

GSP e GSP

freeBlock(...)

428

GSP e GSP

freeBlock(...)

429

GSP | GSP

freeBlock(...)

430

Approach:

We allocate a fresh block for every function call ...

Problem:
When ordering the block before the call, we do not yet know the space

consumption of the called function :~(

— We order the new block after entering the function body!

431

SP

Organisational cells as well as actual parameters must be allocated inside the old
block ...

432

SP e

actual
parameters

When entering the new function, we now allocate the new block ...

433

SP

actual
parameters

FP [}——

local
variables

Inparticular, the local variables reside in the new block ...

434

— We address ...

e the formal parameters relatively to the frame-pointer;

e the local variables relatively to the stack-pointer :-)

— We must re-organize the complete code generation ...

Alternative: Passing of parameters in registers ... :-)

435

argument
registers

SP -

The values of the actual parameters are determined before allocation of the new
stack frame.

436

argument
registers >
actual
SP parameters
FP S
organizational
cells J

The complete frame is allocated inside the new block — plus the space for the
current parameters.

437

argument
registers >
actual
SP parameters
FP \ .

Inside the new block, though, we must store the old SP (possibly +1) in
order to correctly return the result ... :-)

438

3. Idea: Hybrid Solution

For the first k threads, we allocate a separate stack area.

For all further threads, we successively use one of the existing ones !!!

—

e For few threads extremely simple and efficient;

e For many threads amortized storage usage :-))

439

