
44 Terminating Threads

Termination of a thread (usually :-) returns a value. There are two (regular) ways

to terminate a thread:

1. The initial function call has terminated. Then the return value is the return

value of the call.

2. The thread executes the statement exit (e); Then the return value equals

the value of e.

Warning:

• We want to return the return value in the bottom stack cell.

• exit may occur arbitrarily deeply nested inside a recursion. Then we

de-allocate all stack frames ...

• ... and jump to the terminal treatment of threads at address f .

391

Therefore, we translate:

code exit (e); ρ = codeR e ρ

exit

term

next

The instruction term is explained later :-)

The instruction exit successively pops all stack frames:

result = S[SP];

while (FP 6= –1) {

SP = FP–2;

FP = S[FP–1];

}

S[SP] = result;

392

FP FP −1

exit−1

17

17

393

The instruction next activates the next executable thread:

in contrast to yield the current thread is not inserted into RQ .

SP
PC
FP

1313

SP
PC
FP

4

next

CT

RQ

13CT 13

RQ

4

4

39
4
21

39
4
21

39
4
21

5
7
2

5

2
7

394

If the queue RQ is empty, we additionally terminate the whole program:

if (0 > ct = dequeue(RQ)) halt;

else {

save ();
CT = ct;

restore ();
}

395

45 Waiting for Termination

Occaionally, a thread may only continue with its execution, if some other thread

has terminated. For that, we have the expression join (e) where we assume

that e evaluatges to a thread id tid.

• If the thread with the given tid is already terminated, we return its return

value.

• If it is not yet terminated, we interrupt the current thread execution.

• We insert the current thread into the queue of treads already waiting for the

termination.

We save the current registers and switch to the next executable thread.

• Thread waiting for termination are maintained in the table JTab.

• There, we also store the return values of threads :-)

396

Example:

CT RQ

JTab

2

0

1

4

3

10

2 3

4

Thread 0 is running, thread 1 could run, threads 2 and 3 wait for the termination

of 1, and thread 4 waits for the termination of 3.

397

Thus, we translate:

codeR join (e) ρ = codeR e ρ

join

finalize

... where the instruction join is defined by:

tid = S[SP];

if (TTab[tid][1] ≥ 0) {

enqueue (JTab[tid], CT);
next

}

398

... accordingly:

finalize

SP SP 425

425 425

S[SP] = JTab[tid][1];

399

The instruction sequence:

term

next

is executed before a thread is terminated.

Therefore, we store them at the location f.

The instruction next switches to the next executable thread. Before that,

though,

• ... the last stack frame must be popped and the result be stored in the table

JTab ;

• ... the thread must be marked as terminated, e.g., by additionally setting the

PC to −1;

• ... all threads must be notified which have waited for the termination.

For the instruction term this means:

400

PC = –1;

JTab[CT][1] = S[SP];

freeStack(SP);

while (0 ≤ tid = dequeue (JTab[CT][0]))
enqueue (RQ, tid);

The run-time function freeStack (int adr) removes the (one-element) stack at

the location adr :

adr

freeStack(adr)

401

46 Mutual Exclusion

A mutex is an (abstract) datatype (in the heap) which should allow the

programmer to dedicate exclusive access to a shared resource (mutual

exclusion).

The datatype supports the following operations:

Mutex ∗ newMutex (); — creates a new mutex;

void lock (Mutex ∗me); — tries to acquire the mutex;

void unlock (Mutex ∗me); — releases the mutex;

Warning:

A thread is only allowed to release a mutex if it has owned it beforehand :-)

402

A mutex me consists of:

• the tid of the current owner (or −1 if there is no one);

• the queue BQ of blocked threads which want to acquire the mutex.

1

0

BQ

owner

403

Then we translate:

codeR newMutex () ρ = newMutex

where:

newMutex
−1

404

Then we translate:

code lock (e); ρ = codeR e ρ

lock

where:

lock

17CT 17CT

17−1

405

If the mutex is already owned by someone, the current thread is interrupted:

lock

17CT CT
17

55

if (S[S[SP]] < 0) S[S[SP– –]] = CT;

else {

enqueue (S[SP– –]+1, CT);
next;

}

406

Accordingly, we translate:

code unlock (e); ρ = codeR e ρ

unlock

where:

unlock

5CTCT

175

5

17

407

If the queue BQ is empty, we release the mutex:

CT CT

unlock

5

5

−1

5

if (S[S[SP]] 6= CT) Error (“Illegal unlock!”);

if (0 > tid = dequeue (S[SP]+1)) S[S[SP– –]] = –1;

else {

S[S[SP--]] = tid;

enqueue (RQ, tid);
}

408

47 Waiting for Better Wheather

It may happen that a thread owns a mutex but must wait until some extra

condition is true.

Then we want the thread to remain in-active until it is told otherwise.

For that, we use condition variables. A condition variable consists of a queue

WQ of waiting threads :-)

0 WQ

409

For condition variables, we introduce the functions:

CondVar ∗ newCondVar (); — creates a new condition variable;

void wait (CondVar ∗ cv, Mutex ∗ me); — enqueues the current thread;

void signal (CondVar ∗ cv); — re-animates one waiting thread;

void broadcast (CondVar ∗ cv); — re-animates all waiting threads.

410

Then we translate:

codeR newCondVar () ρ = newCondVar

where:

newCondVar

411

After enqueuing the current thread, we release the mutex. After re-animation,

though, we must acquire the mutex again.

Therefore, we translate:

code wait (e0, e1); ρ = codeR e1 ρ

codeR e0 ρ

wait

dup

unlock

next

lock

where ...

412

CT CT

wait

5 5

55 5

if (S[S[SP-1]] 6= CT) Error (“Illegal wait!”);

enqueue (S[SP], CT); SP--;

413

Accordingly, we translate:

code signal (e); ρ = codeR e ρ

signal

signal

RQ RQ

17

17

if (0 ≤ tid = dequeue (S[SP]))

enqueue (RQ, tid);
SP--;

414

Analogously:

code broadcast (e); ρ = codeR e ρ

broadcast

where the instruction broadcast enqueues all threads from the queue WQ

into the ready-queue RQ :

while (0 ≤ tid = dequeue (S[SP]))

enqueue (RQ, tid);
SP--;

Warning:

The re-animated threads are not blocked !!!

When they become running, though, they first have to acquire their mutex :-)

415

48 Example: Semaphores

A semaphore is an abstract datatype which controls the access of a bounded

number of (identical) resources.

Operations:

Sema ∗ newSema (int n) — creates a new semaphore;

void Up (Sema ∗ s) — increases the number of free resources;

void Down (Sema ∗ s) — decreases the number of available resources.

416

Therefore, a semaphore consists of:

• a counter of type int;

• a mutex for synchronizing the semaphore operations;

• a condition variable.

typedef struct {

Mutex ∗ me;

CondVar ∗ cv;

int count;

} Sema;

417

Sema ∗ newSema (int n) {

Sema ∗ s;

s = (Sema ∗) malloc (sizeof (Sema));

s→me = newMutex ();

s→cv = newCondVar ();

s→count = n;

return (s);

}

418

The translation of the body amounts to:

alloc 1 newMutex newCondVar loadr 1 loadr 2

loadc 3 loadr 2 loadr 2 loadr 2 storer -2

new store loadc 1 loadc 2 return

storer 2 pop add add

pop store store

pop pop

419

The function Down() decrements the counter.

If the counter becomes negative, wait is called:

void Down (Sema ∗ s) {

Mutex ∗me;

me = s→me;

lock (me);

s→count– –;

if (s→count < 0) wait (s→cv,me);

unlock (me);

}

420

The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1

loadr 1 add store add

load load loadc 0 load

storer 2 loadc 1 le wait

lock sub jumpz A A: loadr 2

loadr 1 loadr 2 unlock

loadr 1 loadc 2 loadr 1 return

421

The function Up() increments the counter again.

If it is afterwards not yet positive, there still must exist waiting threads. One of

these is sent a signal:

void Up (Sema ∗ s) {

Mutex ∗me;

me = s→me;

lock (me);

s→count++;

if (s→count ≤ 0) signal (s→cv);

unlock (me);

}

422

The translation of the body amounts to:

alloc 1 loadc 2 add loadc 1

loadr 1 add store add

load load loadc 0 load

storer 2 loadc 1 le signal

lock add jumpz A A: loadr 2

loadr 1 unlock

loadr 1 loadc 2 loadr 1 return

423

49 Stack-Management

Problem:

• All threads live within the same storage.

• Every thread requires its own stack (at least conceptually).

1. Idea:

Allocate for each new thread a fixed amount of storage space.

==⇒

Then we implement:

void *newStack() { return malloc(M); }

void freeStack(void *adr) { free(adr); }

424

Problem:

• Some threads consume much, some only little stack space.

• The necessary space is statically typically unknown :-(

2. Idea:

• Maintain all stacks in one joint Frame-Heap FH :-)

• Take care that the space inside the stack frame is sufficient at least for the

current function call.

• A global stack-pointer GSP points to the overall topmost stack cell ...

425

thread 2

thread 1

GSP

Allocation and de-allocation of a stack frame makes use of the run-time

functions:

int newFrame(int size) {

int result = GSP;

GSP = GSP+size;

return result;

}

void freeFrame(int sp, int size);

426

Warning:

The de-allocated block may reside inside the stack :-(

==⇒

We maintain a list of freed stack blocks :-)

0
42
30

19
15

7
6 1

3

This list supports a function

void insertBlock(int max, int min)

which allows to free single blocks.

• If the block is on top of the stack, we pop the stack immediately;

• ... together with the blocks below – given that these have already been

marked as de-allocated.

• If the block is inside the stack, we merge it with neighbored free blocks:

427

GSP

freeBlock(...)

GSP

428

freeBlock(...)

GSPGSP

429

freeBlock(...)

GSPGSP

430

Approach:

We allocate a fresh block for every function call ...

Problem:

When ordering the block before the call, we do not yet know the space

consumption of the called function :-(

==⇒ We order the new block after entering the function body!

431

SP

Organisational cells as well as actual parameters must be allocated inside the old

block ...

432

actual
parameters

SP

When entering the new function, we now allocate the new block ...

and one further line

433

FP

actual
parameters

local
variables

SP

Inparticular, the local variables reside in the new block ...

and one further line

434

==⇒ We address ...

• the formal parameters relatively to the frame-pointer;

• the local variables relatively to the stack-pointer :-)

==⇒ We must re-organize the complete code generation ... :-(

Alternative: Passing of parameters in registers ... :-)

435

SP

argument
registers

The values of the actual parameters are determined before allocation of the new

stack frame.

436

argument
registers

actual
parameters

organizational
cells

FP

SP

The complete frame is allocated inside the new block – plus the space for the

current parameters.

437

argument
registers

actual
parameters

FP

SP

Inside the new block, though, we must store the old SP (possibly +1) in

order to correctly return the result ... :-)

438

3. Idea: Hybrid Solution

• For the first k threads, we allocate a separate stack area.

• For all further threads, we successively use one of the existing ones !!!

==⇒

• For few threads extremely simple and efficient;

• For many threads amortized storage usage :-))

439

