With CBN, we generate for the access to a variable:

codey x psd = getvarx psd

eval

The instruction eval checks, whether the value has already been computed
or whether its evaluation has to yet to be done (== will be treated later :-)
With CBV, we can just delete eval from the above code schema.

The (compile-time) macro getvar is defined by:

getvarx psd = let(t,i)=pxin
case t of
L = pushloc (sd — i)
G = pushglob i

end

133

The access to local variables:

|

pushloc n

S[SP+1] =S[SP - n]; SP++;

134

Correctness argument:

Let sp and sd be the values of the stack pointer resp. stack distance before the
execution of the instruction. The value of the local variable with address i is
loaded from S|a] with

a=sp—(sd—i)=(sp—sd)+i=sp,+i
... exactly as it should be :-)

135

The access to global variables is much simpler:

GP —

pushglob i

SP=SP +1;

GP —

S[SP] = GP—v[il;

136

Example:

Regard e= (b+c) for p={b~— (L,1),c— (G,0)}and sd=1.
With CBN, we obtain:

137

codeyepl = getvarbpl = 1 pushlocO

eval 2 eval
getbasic 2 getbasic
getvarc p 2 2 pushglob 0
eval 3 eval
getbasic 3 getbasic
add 3 add
mkbasic 2 mkbasic

15 let-Expressions

As a warm-up let us first consider the treatment of local variables :-)
Let e=lety; =ey;,...;y, =e,iney be alet-expression.
The translation of e must deliver an instruction sequence that

e allocates local variables vy, ..., yu;

e in the case of
CBV: evaluates ey, . . ., e, and binds the y; to their values;
CBN: constructs closures for the ey, .. ., ¢, and binds the y; to them;

e evaluates the expression ¢y and returns its value.

Here, we consider the non-recursive case only, i.e. where y; only depends on
Y1,...,Yj-1. We obtain for CBN:

138

codey e psd = codece; psd

codec e p1 (sd +1)

codec e, py—1 (sd+n—1)
codey ey p, (sd + n)

slide n // deallocates local variables

where pi=pP{yi— (Lsd+i)|i=1,...,j}.

In the case of CBV, we use codey for the expressions ey, .. ., ej.
Warning!

All the e; must be associated with the same binding for the global variables!

139

Example:

Consider the expression
e=leta=19,b=a*xaina+>b

for p = () and sd = 0. We obtain (for CBV):

0 loadc19 3 getbasic 3 pushloc1
1 mkbasic 3 mul 4 getbasic
1 pushlocO 2 mbkbasic 4 add

2 getbasic 2 pushloc1 3 mkbasic
2 pushloc1 3 getbasic 3 slide2

140

The instruction slide k deallocates again the space for the locals:

slide k

S[SP-k] = S[SP];
SP =SP - k;

141

16 Function Definitions

The definition of a function f requires code that allocates a functional value for f
in the heap. This happens in the following steps:

e Creation of a Global Vector with the binding of the free variables;
e Creation of an (initially empty) argument vector;

e Creation of an F-Object, containing references to these vectors and the start
address of the code for the body;

Separately, code for the body has to be generated.

Thus:

142

codey (fn xq,..., X1 = e)psd = getvar zg p sd

getvar z; p (sd +1)

getvar zg_1 p (sd +g—1)
mkvec g

mkfunval A

jump B
A: targk
codeye p' 0
return k
B:
where {zo, ..., 2g-1} = free(fn xo, ..., X1 = e)

and o ={xi— (L,—i)|i=0,...,k=1}U{z;— (G,j) | j=0,...,g— 1}

143

mkvec g

%AAA s

h =new (V, n);

SP=SP-¢g+1;

for (i=0; i<g; i++)
h—v[i] = S[SP + i];

S[SP] = h;

144

<

mkfunval A

a =new (V,0);
S[SP] =new (F, A, a, S[SP]);

145

Example:

Regard f=fnb=a+b for p={a— (L,1)}and sd=1.

codey f p 1 produces:

1 pushloc 0 0 pushglob 0 2 getbasic
2 mkvec 1 1 eval 2 add

2 mkfunval A 1 getbasic 1 mkbasic
2 jump B 1 pushloc1 1 return 1
0 A: targl 2 eval 2 B:

The secrets around targk and returnk will berevealed later :-)

146

17 Function Application

Function applications correspond to function calls in C.
The necessary actions for the evaluationof e ey ... e,,_1 are:

e Allocation of a stack frame;

e Transfer of the actual parameters , i.e. with:
CBV: Evaluation of the actual parameters;
CBN: Allocation of closures for the actual parameters;

e Evaluation of the expression ¢’ to an F-object;

e Application of the function.

Thus for CBN:

147

codey (€' ey ... em—1)psd = mark A // Allocation of the frame
codec e;—1 p (sd + 3)
codec ey_o p (sd +4)

codec ep p (sd +m +2)
codey € p (sd +m + 3) // Evaluation of ¢’

apply // corresponds to call
A

To implement CBV, we use codey instead of codec for the arguments e;.

Example: For (f42),p={f+ (L,2)} and sd = 2, we obtain with CBV:

2 mark A 6 mkbasic 7 apply
5 loadc42 6 pushloc4 3 A:

148

A Slightly Larger Example:

For CBV and
0 loadc17 2
1 mkbasic 0
1 pushloc0 0
2 mkvecl 1
2 mkfunval A 1

leta =17, f =fnb=a-+bin f 42

sd =0 we obtain:

jump B

A: targl
pushglob 0
getbasic
pushloc 1

149

getbasic
add
mkbasic

return 1

mark C

loadc 42
mkbasic
pushloc 4

apply
slide 2

