
For the implementation of the new instruction, we must fix the organization of a

stack frame:

FPold

PCold

GPold

FP 0

-1

-2

local stack

3 org. cells

SP

Arguments
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Remember: Addressing of arguments and local variables

FP

sd
SP

0sp e0

em−1
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Different from the CMa, the instruction mark A already saves the return

address:

V V

A

mark A

GP GP

FP = SP = SP + 3;

FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;

152



The instruction apply unpacks the F-object, a reference to which (hopefully)

resides on top of the stack, and continues execution at the address given there:

42

GP

PC 42

GP

PC
F

ap gp
apply

VV

for (i=0; i< h→ap→n; i++)
S[SP+i] = h→ap→v[i];

SP = SP + h→ap→n – 1;
}

else {
Error “no fun”;

h = S[SP];
if (H[h] != (F,_,_))

GP = h→gp; PC = h→cp;

V n
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Warning:

• The last element of the argument vector is the last to be put onto the stack.

This must be the first argument reference.

• This should be kept in mind, when we treat the packing of arguments of an

under-supplied function application into an F-object !!!
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18 Over– and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an

apply is targ k .

This instruction checks whether there are enough arguments to evaluate the

body.

Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP – FP
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targ k is a complex instruction.

We decompose its execution in the case of under-supply into several steps:

targ k = if (SP – FP < k) {

mkvec0; // creating the argumentvector

wrap; // wrapping into an F − object

popenv; // popping the stack frame

}

The combination of these steps into one instruction is a kind of optimization :-)
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The instruction mkvec0 takes all references from the stack above FP and

stores them into a vector:

FPFP

g
mkvec0

g = SP–FP; h = new (V, g);
SP = FP+1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g
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The instruction wrap A wraps the argument vector together with the global

vector into an F-object:

ap gp

GPGP

wrap A
VV

V V

F A

S[SP] = new (F, A, S[SP], GP);
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The instruction popenv finally releases the stack frame:

19

42PC

GP

FP

19

42 FPpopenv

GP = S[FP-2];

FP = S[FP-1];

S[FP-2] = S[SP];
PC = S[FP];
SP = FP - 2;
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Thus, we obtain for targ k in the case of under supply:

FP

GP

PC 42

17

V

V

mkvek0
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FP

GP

PC 42

17

V

V

V m

wrap
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FP

41GP

PC 42

17

V

V

V m

F

popenv
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GP

PC

41

17

FP

V

V

V

F
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GP

PC

41

17

FP

V

V

V

F
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• The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

• If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ...

• The check for this is done by return k:

return k = if (SP − FP = k + 1)

popenv; // Done

else { // There are more arguments

slide k;

apply; // another application

}

The execution of return k results in:
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Case: Done

GP

PC

FP

17

GP

PC

17FP

VV

k
popenv
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Case: Over-supply

FP FP

F

k
slide k

F

apply
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