
For the implementation of the new instruction, we must fix the organization of a

stack frame:

FPold

PCold

GPold

FP 0

-1

-2

local stack

3 org. cells

SP

Arguments

150



Remember: Addressing of arguments and local variables

FP

sd
SP

0sp e0

em−1

151



Different from the CMa, the instruction mark A already saves the return

address:

V V

A

mark A

GP GP

FP = SP = SP + 3;

FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = A;

152



The instruction apply unpacks the F-object, a reference to which (hopefully)

resides on top of the stack, and continues execution at the address given there:

42

GP

PC 42

GP

PC
F

ap gp
apply

VV

for (i=0; i< h→ap→n; i++)
S[SP+i] = h→ap→v[i];

SP = SP + h→ap→n – 1;
}

else {
Error “no fun”;

h = S[SP];
if (H[h] != (F,_,_))

GP = h→gp; PC = h→cp;

V n

153



Warning:

• The last element of the argument vector is the last to be put onto the stack.

This must be the first argument reference.

• This should be kept in mind, when we treat the packing of arguments of an

under-supplied function application into an F-object !!!

154



18 Over– and Undersupply of Arguments

The first instruction to be executed when entering a function body, i.e., after an

apply is targ k .

This instruction checks whether there are enough arguments to evaluate the

body.

Only if this is the case, the execution of the code for the body is started.

Otherwise, i.e. in the case of under-supply, a new F-object is returned.

The test for number of arguments uses: SP – FP

155



targ k is a complex instruction.

We decompose its execution in the case of under-supply into several steps:

targ k = if (SP – FP < k) {

mkvec0; // creating the argumentvector

wrap; // wrapping into an F − object

popenv; // popping the stack frame

}

The combination of these steps into one instruction is a kind of optimization :-)

156



The instruction mkvec0 takes all references from the stack above FP and

stores them into a vector:

FPFP

g
mkvec0

g = SP–FP; h = new (V, g);
SP = FP+1;
for (i=0; i<g; i++)

h→v[i] = S[SP + i];
S[SP] = h;

V g

157



The instruction wrap A wraps the argument vector together with the global

vector into an F-object:

ap gp

GPGP

wrap A
VV

V V

F A

S[SP] = new (F, A, S[SP], GP);

158



The instruction popenv finally releases the stack frame:

19

42PC

GP

FP

19

42 FPpopenv

GP = S[FP-2];

FP = S[FP-1];

S[FP-2] = S[SP];
PC = S[FP];
SP = FP - 2;

159



Thus, we obtain for targ k in the case of under supply:

FP

GP

PC 42

17

V

V

mkvek0

160



FP

GP

PC 42

17

V

V

V m

wrap

161



FP

41GP

PC 42

17

V

V

V m

F

popenv

162



GP

PC

41

17

FP

V

V

V

F

163



GP

PC

41

17

FP

V

V

V

F

164



• The stack frame can be released after the execution of the body if exactly the

right number of arguments was available.

• If there is an oversupply of arguments, the body must evaluate to a function,

which consumes the rest of the arguments ...

• The check for this is done by return k:

return k = if (SP − FP = k + 1)

popenv; // Done

else { // There are more arguments

slide k;

apply; // another application

}

The execution of return k results in:

165



Case: Done

GP

PC

FP

17

GP

PC

17FP

VV

k
popenv

166



Case: Over-supply

FP FP

F

k
slide k

F

apply

167


