
19 letrec-Expressions

Consider the expression e ≡ letrec y1 = e1; . . . ; yn = en in e0 .

The translation of e must deliver an instruction sequence that

• allocates local variables y1, . . . , yn;

• in the case of

CBV: evaluates e1, . . . , en and binds the yi to their values;

CBN: constructs closures for the e1, . . . , en and binds the yi to them;

• evaluates the expression e0 and returns its value.

Warning:

In a letrec-expression, the definitions can use variables that will be allocated

only later! ==⇒ Dummy-values are put onto the stack before processing the

definition.

168



For CBN, we obtain:

codeV e ρ sd = alloc n // allocates local variables

codeC e1 ρ
′ (sd + n)

rewrite n

. . .

codeC en ρ
′ (sd + n)

rewrite 1

codeV e0 ρ
′ (sd + n)

slide n // deallocates local variables

where ρ
′ = ρ ⊕ {yi 7→ (L, sd + i) | i = 1, . . . , n}.

In the case of CBV, we also use codeV for the expressions e1, . . . , en.

Warning:

Recursive definitions of basic values are undefined with CBV!!!

169



Example:

Consider the expression

e ≡ letrec f = fnx, y ⇒ ify ≤ 1 then x else f (x ∗ y)(y − 1) in f 1

for ρ = ∅ and sd = 0. We obtain (for CBV):

0 alloc 1 0 A: targ 2 4 loadc 1

1 pushloc 0 0 ... 5 mkbasic

2 mkvec 1 1 return 2 5 pushloc 4

2 mkfunval A 2 B: rewrite 1 6 apply

2 jump B 1 mark C 2 C: slide 1

170



The instruction alloc n reserves n cells on the stack and initialises them with

n dummy nodes:

−1 −1C
−1 −1C
−1 −1C
−1 −1C

n
alloc n

S[SP+i] = new (C,-1,-1);
SP = SP + n;

for (i=1; i<=n; i++)

171



The instruction rewrite n overwrites the contents of the heap cell pointed to

by the reference at S[SP–n]:

n

x

rewrite n

H[S[SP-n]] = H[S[SP]];
SP = SP - 1;

x

• The reference S[SP – n] remains unchanged!

• Only its contents is changed!

172



20 Closures and their Evaluation

• Closures are needed only for the implementation of CBN.

• Before the value of a variable is accessed (with CBN), this value must be

available.

• Otherwise, a stack frame must be created to determine this value.

• This task is performed by the instruction eval.

173



eval can be decomposed into small actions:

eval = if (H[S[SP]] ≡ (C, _, _)) {

mark0; // allocation of the stack frame

pushloc 3; // copying of the reference

apply0; // corresponds to apply

}

• A closure can be understood as a parameterless function. Thus, there is no

need for an ap-component.

• Evaluation of the closure thus means evaluation of an application of this

function to 0 arguments.

• In constrast to mark A , mark0 dumps the current PC.

• The difference between apply and apply0 is that no argument vector

is put on the stack.

174



V

1717

V

17

mark0

FP = SP = SP + 3;

GP

PCPC

GP FPFP

S[SP+1] = GP;
S[SP+2] = FP;
S[SP+3] = PC;

175



42C

gpcp

GP

PC

GP

PC

C

gp

42

42

cp

apply0

V V

GP = h→gp; PC = h→cp;
h = S[SP]; SP--;

We thus obtain for the instruction eval:

176



gp

FP

C

cp

42

GP

PC 17

3

mark0V

gp

3

3

17

17

FP

C

cp

42

GP

PC

pushloc 3V

177



gp

3

3

17

17

FP

C

cp

42

GP

PC

apply0V

3

17

FP

C

cp

42

GP

PC

gp

42

V

178



The construction of a closure for an expression e consists of:

• Packing the bindings for the free variables into a vector;

• Creation of a C-object, which contains a reference to this vector and to the

code for the evaluation of e:

codeC e ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g − 1)

mkvec g

mkclos A

jump B

A : codeV e ρ
′ 0

update

B : . . .

where {z0, . . . , zg−1} = free(e) and ρ
′ = {zi 7→ (G, i) | i = 0, . . . , g − 1}.

179



Example:

Consider e ≡ a ∗ a with ρ = {a 7→ (L, 0)} and sd = 1. We obtain:

1 pushloc 1 0 A: pushglob 0 2 getbasic

2 mkvec 1 1 eval 2 mul

2 mkclos A 1 getbasic 1 mkbasic

2 jump B 1 pushglob 0 1 update

2 eval 2 B: ...

180



• The instruction mkclos A is analogous to the instruction mkfunval A.

• It generates a C-object, where the included code pointer is A.

C A

mkclos A

V V

S[SP] = new (C, A, S[SP]);

181



In fact, the instruction update is the combination of the two actions:

popenv

rewrite 1

It overwrites the closure with the computed value.

C

19

42PC

GP

FP

19

42 FP
update

182



21 Optimizations I: Global Variables

Observation:

• Functional programs construct many F- and C-objects.

• This requires the inclusion of (the bindings of) all global variables.

Recall, e.g., the construction of a closure for an expression e ...

183



codeC e ρ sd = getvar z0 ρ sd

getvar z1 ρ (sd + 1)

. . .

getvar zg−1 ρ (sd + g − 1)

mkvec g

mkclos A

jump B

A : codeV e ρ
′ 0

update

B : . . .

where {z0, . . . , zg−1} = free(e) and ρ
′ = {zi 7→ (G, i) | i = 0, . . . , g − 1}.

184



Idea:

• Reuse Global Vectors, i.e. share Global Vectors!

• Profitable in the translation of let-expressions or function applications: Build

one Global Vector for the union of the free-variable sets of all let-definitions

resp. all arguments.

• Allocate (references to ) global vectors with multiple uses in the stack frame

like local variables!

• Support the access to the current GP by an instruction copyglob :

185



GP GP

copyglob

SP++;
S[SP] = GP;

V V

186



• The optimization will cause Global Vectors to contain more components

than just references to the free the variables that occur in one expression ...

Disadvantage: Superfluous components in Global Vectors prevent the

deallocation of already useless heap objects ==⇒ Space Leaks :-(

Potential Remedy: Deletion of references at the end of their life time.

187



22 Optimizations II: Closures

In some cases, the construction of closures can be avoided, namely for

• Basic values,

• Variables,

• Functions.

188



Basic Values:

The construction of a closure for the value is at least as expensive as the

construction of the B-object itself!

Therefore:

codeC b ρ sd = codeV b ρ sd = loadc b

mkbasic

This replaces:

mkvec 0 jump B mkbasic B: ...

mkclos A A: loadc b update

189



Variables:

Variables are either bound to values or to C-objects. Constructing another

closure is therefore superfluous. Therefore:

codeC x ρ sd = getvar x ρ sd

This replaces:

getvar x ρ sd mkclos A A: pushglob 0 update

mkvec 1 jump B eval B: ...

Example: e ≡ letrec a = b; b = 7 in a. codeV e ∅ 0 produces:

0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

The execution of this instruction sequence should deliver the basic value 7 ...

190



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

alloc 2

191



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

pushloc 0

192



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

rewrite 2

193



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

loadc 7

194



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

−1−1C

−1−1C

7

mkbasic

195



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7

−1−1C

−1−1C

B

rewrite 1

196



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7B

−1−1C

pushloc 1

197



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

7B

−1−1C

−1−1C

eval

198



0 alloc 2 3 rewrite 2 3 mkbasic 2 pushloc 1

2 pushloc 0 2 loadc 7 3 rewrite 1 3 eval

3 slide 2

Segmentation Fault !!

199



Apparently, this optimization was not quite correct :-(

The Problem:

Binding of variable y to variable x before x’s dummy node is replaced!!

==⇒

The Solution:

cyclic definitions: reject sequences of definitions like

let a = b; . . . b = a in . . ..

acyclic definitions: order the definitions y = x such that the dummy node for

the right side of x is already overwritten.

200



Functions:

Functions are values, which are not evaluated further. Instead of generating

code that constructs a closure for an F-object, we generate code that constructs

the F-object directly.

Therefore:

codeC (fn x0 , . . . , xk−1 ⇒ e) ρ sd = codeV (fn x0 , . . . , xk−1 ⇒ e) ρ sd

201



23 The Translation of a Program Expression

Execution of a program e starts with

PC = 0 SP = FP = GP = −1

The expression e must not contain free variables.

The value of e should be determined and then a halt instruction should be

executed.

code e = codeV e ∅ 0

halt

202



Remarks:

• The code schemata as defined so far produce Spaghetti code.

• Reason: Code for function bodies and closures placed directly behind the

instructions mkfunval resp. mkclos with a jump over this code.

• Alternative: Place this code somewhere else, e.g. following the

halt-instruction:

Advantage: Elimination of the direct jumps following mkfunval and

mkclos.

Disadvantage: The code schemata are more complex as they would have to

accumulate the code pieces in a Code-Dump.

==⇒

Solution:

Disentangle the Spaghetti code in a subsequent optimization phase :-)

203



Example: let a = 17; f = fn b ⇒ a + b in f 42

Disentanglement of the jumps produces:

0 loadc 17 2 mark B 3 B: slide 2 1 pushloc 1

1 mkbasic 5 loadc 42 1 halt 2 eval

1 pushloc 0 6 mkbasic 0 A: targ 1 2 getbasic

2 mkvec 1 6 pushloc 4 0 pushglob 0 2 add

2 mkfunval A 7 eval 1 eval 1 mkbasic

7 apply 1 getbasic 1 return 1

204


