Program Optimisation

Winter Semester 2004

2. Homework

Deadline: 9 Nov 2004 12:00

Exercise 1:

For a complete lattice \mathbb{D}, let $h(\mathbb{D})=n$ be the maximal length of any strictly ascending chain $\perp \sqsubset d_{1} \sqsubset \ldots \sqsubset d_{n}$. Show that for complete lattices \mathbb{D}_{1} and \mathbb{D}_{2} :
a) $h\left(\mathbb{D}_{1} \times \mathbb{D}_{2}\right)=h\left(\mathbb{D}_{1}\right)+h\left(\mathbb{D}_{2}\right)$
b) $h\left(\mathbb{D}_{1}{ }^{k}\right)=k \cdot h\left(\mathbb{D}_{1}\right)$
c) $h\left(\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]\right)=\left|\mathbb{D}_{1}\right| \cdot h\left(\mathbb{D}_{2}\right)$ where $\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ is the set of monotone functions $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$, and $\left|\mathbb{D}_{1}\right|$ is the cardinality of \mathbb{D}_{1}.

Exercise 2:

6 Points
Extend the analysis and transformation for available expressions so that the availability of load operations are also considered.

Exercise 3:

Consider a constraint system of the form:

$$
x_{i} \sqsupseteq f_{i}\left(x_{i+1}\right) \quad(1 \leq i \leq n)
$$

where each f_{i} is a monotone function. Show that:
a) The fixpoint-iteration terminates in at most n iterations.
b) One Round-Robin-iteration suffices for a suitable ordering of variables.
c) Can the upper bound n on the maximum number of iterations be reached?

