Technische Universität München Fakultät für Informatik Prof. Dr. H. Seidl Dr. K. N. Verma verma@in.tum.de Room: MI 02.07.041

Program Optimisation

Winter Semester 2004

3. Homework

Deadline: 16 Nov 2004 12:00

Exercise 1:

Define a program analysis which directly computes the set of dead variables for each program point.

- a) Define the associated lattice.
- b) Define the associated edge-transformation.
- c) Extend the analysis to a "real deadness" analysis.

How can the correctness of the analysis be shown?

Exercise 2:

Let $f_1, f_2 : \mathbb{D} \to \mathbb{D}$ be two distribution functions. Show that

- a) $f_1 \circ f_2$ is distributive.
- b) $f_1 \sqcup f_2$ is distributive.

Exercise 3:

Apply the three optimisations of the lecture on the example program swap. Is the result now satisfactory?

Exercise 4:

Let $\mathbb{V}_1 = \{V \in \mathbb{V} \mid e \neq e' \Rightarrow (Ve) \cap (Ve') = \emptyset\} \cup \{V_T\}$ where $V_T = Vars$ for all $e \in Expr$, with $\mathbb{V}, Vars, Expr$ as in the lecture.

- a) Show that the analysis for eliminating redundant moves in reality works with \mathbb{V}_1 instead of \mathbb{V} .
- b) Show that the longest strictly increasing chain in \mathbb{V}_1 has length |Vars| + 1, independent of the number of expressions e.

4 - 00000

6 Points

6 Points

6 Points

4 Points

0 P01