Program Optimisation

Winter Semester 2004

9. Homework

Deadline: 18 Jan 2005 12:00

Exercise 1:

Consider the following set of operators and constants.

$$
\begin{aligned}
& \mathrm{BinOp}=\{:,+\} \\
& \text { UnOp }=\{\mathrm{M}\} \\
& \text { Leaf }=\{\text { int, }[]\}
\end{aligned}
$$

Further assume that we treat non-terminals ("registers") as leaves. Give regular treegrammars for the following sets of trees.
a) all lists (inner nodes: ".") of int's with an even number of elements (in particular the leftmost node is "[]").
b) all trees in which an M always has, directly below itself, a " + ".
c) all trees in which an M never has (directly or indirectly) below itself a ":".

Exercise 2:

For a grammar G let $L(G, R)$ be the set of terminal trees derivable from R.
a) Show that $L(G, R) \neq \emptyset$ if G contains the following rules:

$$
\begin{aligned}
& R \rightarrow a(A, B) \\
& A \rightarrow b(A) \\
& A \rightarrow c(B) \\
& B \rightarrow d
\end{aligned}
$$

b) Give a (if possible, linear) algorithm which, given a grammar G and a non-terminal R, decides whether $L(G, R)$ is non-empty.

Exercise 3:

6 Points
Let G be a regular grammar of size n and R a non-terminal of G. Show
a) $L(G, R) \neq \emptyset$ iff $t \in L(G, R)$ for some t of depth $\leq n$.
b) $L(G, R)$ is infinite iff $t \in L(G, R)$ for some t of depth d with $n<d \leq 2 n$.
(In particular define "size of a grammar" so that these claims hold :-)

