
Cryptographic Protocols

Kumar Neeraj Verma

TU München

Winter Semester 2005

Communication over computer networks
Bob

Alice

Security problems

• Adversary can spy on messages,

• delete messages,

• modify messages,

• impersonate as Alice to Bob,

• deny having sent or received a message

• . . .

How to secure communication over an insecure network ?

Cryptography and cryptographic protocols to the rescue . . .

Security problems

• Adversary can spy on messages,

• delete messages,

• modify messages,

• impersonate as Alice to Bob,

• deny having sent or received a message

• . . .

How to secure communication over an insecure network ?

Cryptography and cryptographic protocols to the rescue . . .

Encrypting and decrypting messages

. . . the naive way:

Instead of Alice −→ Bob:

This is Alice. My credit card number is 1234567890123456

We have Alice −→ Bob:

6543210987654321 si rebmun drac tiderc yM .ecilA si sihT

Alice and Bob agree on the method of encryption and decryption.

ciphertext
encryption decryption

plaintext original plaintext

Cryptography with keys

Today we instead have the following picture:

ciphertext
encryption decryption

K1
K2

plaintext original plaintext

The encryption and decryption algorithms are assumed to be publicly

known.

The security lies in the (secret) keys.

8109675
add mod 10 add mod 10

47652314765231

4 6

Cryptography of the pre-computer age
Substitution ciphers: each character is mapped to the another

character. The famous Caesar cipher: A → D, B → E, . . . , Z → C.

transposition cipher: shuffling around of characters.

Plaintext: this is alice my credit card number is

1234567890123456

thisisalic

emycreditc

ardnumberi

s123456789

0123456

Ciphertext: teas0 hmr11 iyd22 scn33 iru44 sem55 adb66 lie7i

tr8cc i9

Private key cryptography

encryption decryption
{m}k

k k

m m

• The same key k is used for encryption and decryption

• Given message m and key k, we can compute the encrypted message

{m}k

• Given the encrypted message {m}k and the key k, we can compute the

original message m

Private key cryptography

Suppose Kab is a private key shared between A and B.

A can send a message m to B using private key cryptography:

A −→ B : {m}Kab

Only B can get back the message m.

A and B need to agree beforehand on a key Kab which should not be

disclosed to any one else

Public key cryptography

encryption decryption
{m}k

k

m m

k−1

• A chooses pair (Ka,K
−1
a) of keys such that

– messages encrypted with Ka can be decrypted with K−1
a

– K−1
a cannot be calculated from Ka

• A makes Ka public: this is the public key of A

• A keeps K−1
a secret: this is the private key of A

Public key cryptography

Then any B can send a message to A which only A can read:

B −→ A : {m}Ka

Sometimes we have the additional property: messages encrypted with K−1
a

can be decrypted with Ka

Then A can send a message m to B

A −→ B : {m}K−1
a

and B is sure that the message m was encrypted by A. Hence we have

authentication

One way hash functions

Properties of a one way hash function H:

– Given M , it is easy to compute H(M) (called message digest).

– Given H(M) is is difficult to find M ′ such that H(M) = H(M ′).

A sends to B the message M together with the encrypted hash value

{H(M)}Kab
.

Efficient means of demonstrating authenticity, since H(M) is of a fixed size.

Public key cryptography in practice

[user1@host1] ssh user2@host2

The authenticity of host ’host2 (xyz.xyz.xy.xy)’ can’t be

established.

RSA key fingerprint is

::**:**:**:**:**:**:**:**:**:**:**:**:**:**.

Are you sure you want to continue connecting (yesno)? yes

Warning: Permanently added ’host2,xyz.xyz.xy.xy’ (RSA)

to the list of known hosts.

Password:********

Welcome to host2

[user2@host2]

Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms

are perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)

Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms

are perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)

Solution: use session key
Generate fresh random value (nonce) for each new session and use it as a

key for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

Solution: use session key
Generate fresh random value (nonce) for each new session and use it as a

key for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

Solution: use session key
Generate fresh random value (nonce) for each new session and use it as a

key for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

Solution: use session key
Generate fresh random value (nonce) for each new session and use it as a

key for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.

A more complex solution A and B both choose a nonce

each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are

talking to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

A more complex solution A and B both choose a nonce

each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are

talking to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

A more complex solution A and B both choose a nonce

each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are

talking to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

A more complex solution A and B both choose a nonce

each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are

talking to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?

Cryptography and cryptographic protocols

• Cryptography deals with algorithms for encryption, decryption, random

number generation, etc. Cryptographic protocols use cryptography for

exchanging messages.

• Attacks against cryptographic primitives involves breaking the

algorithm for encryption, etc. Attacks against cryptographic protocols

may be of completely logical nature.

• Cryptographic protocols may be insecure even if the underlying

cryptographic primitives are completely secure.

• Hence we often separate the study of cryptographic protocols from that

of cryptographic primitives.

Difficulty in ensuring correctness of
cryptographic protocols

• Infinitely many sessions

• Infinitely many participants

• Infinitely many nonces

• Sessions are interleaved

• Adversary can replace messages by any arbitrary message: infinitely

branching system

Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.

Published in 1978. Attack found after 17 years in 1995 by Lowe.

Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.

Published in 1978. Attack found after 17 years in 1995 by Lowe.

Man in the middle attack

A -
{A,Na}Kc

C (A) -
{A,Na}Kb

B

A �
{Na, Nb}Ka

C (A)�
{Na, Nb}Ka

B

A -
{Nb}Kc

C (A) -
{Nb}Kb

B

Even very simple protocols may have subtle flaws

Man in the middle attack

A -
{A,Na}Kc

C (A) -
{A,Na}Kb

B

A �
{Na, Nb}Ka

C (A)�
{Na, Nb}Ka

B

A -
{Nb}Kc

C (A) -
{Nb}Kb

B

Even very simple protocols may have subtle flaws

Consequences

Suppose B is the server of a bank.

C, who can now pretend to be A:

C −→ B : {Na, Nb, transfer £5000 from account of A to account of C}Kb

A fix: the Needham-Schroeder-Lowe
protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb

Is it secure?

A fix: the Needham-Schroeder-Lowe
protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb

Is it secure?

A variant of the Needham-Schroeder-Lowe
protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb

Does this affect security?

A variant of the Needham-Schroeder-Lowe
protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb

Does this affect security?

Type flaw

An attack on the variant of the Needham-Schroeder-Lowe protocol [Millen]:

C -
{A,C}Kb

B

B -
{C,Nb, B

︸ ︷︷ ︸

Nc

}Ka

A

C �
{Nb, B,Na, A}Kc

A

Security properties

Secrecy:

• some data M is unknown to the intruder (reachability property).

• global secrecy: a message is secret all the time.

• local secrecy: a message is secret till the corresponding session has not

ended.

Security properties

Authentification:

• If A accepts a message M as coming from B then B actually sent M .

• If A received a message of form M1 then B sent a message of form M2.

• If A got a message of form M then B was active

Security properties

Anonymity: an external person should not be able to know about the

sender of a message. E.g. for electronic voting, mobile telephony.

Non-repudiation: an agent should not be able to deny that he sent some

message. E.g. for electronic contract signing

Fairness: E.g. in electronic contract signing no party should have an

advantage over the other. The following electronic contract signing

protocol is not fair for A:

A→ B : SigA(m)

B → A : SigB(m)

An overview of cryptography

RSA

Proposed by Ron Rivest, Adi Shamir and Leonard Adleman in 1978.

One of the most well-known public-key algorithms.

Its security is believed to derive from the difficulty of the integer

factorization problem: decomposing an integer into its prime factors.

Based on modular arithmetic:

0 = 15 = 30 = 45 (mod 15)

4 = 19 = 34 = 49 (mod 15)

10 + 70 = 80 = 5 (mod 15)

6 × 8 = 48 = 3 (mod 15)

112 = 121 = 1 (mod 15)

Numbers x and y are relatively prime if gcd(x, y) = 1.

Euler phi function φ(n) is the number of positive integers smaller than n

and relatively prime to n.

If gcd(a, n) = 1 then aφ(n) = 1 (mod n)

Now suppose p and q are two distinct prime numbers and n = pq.

The set of positive integers smaller than n and relatively prime to n are

{1, . . . , pq − 1} \ {p, 2p, . . . , (q − 1)p, q, 2q, . . . , (p− 1)q}.

Hence φ(n) = pq − 1− p− q + 2 = (p− 1)(q − 1).

Randomly choose two large distinct prime numbers p and q. n = pq.

Choose e such that e and φ(n) are relatively prime.

Compute d such that ed = 1 (mod φ(n))

I.e. d = e−1 (mod φ(n)) (use Euclid’s algorithm)

Public key = (n, e), encryption: C = M e (mod n)

Private key = d, decryption: M = Cd (mod n)

We have M ed = Mkφ(n)+1 = (Mφ(n))kM = M (mod n).

The whole message is first divided into smaller portions < n.

Also works if M is not relatively prime to n.

M = ap where 0 < a < q.

M ed = (Mφ(n))kM = (aq−1pq−1)p−1M = 1p−1M = M (mod q)

M ed = 0 = M (mod p)

Hence M ed = M (mod n)

We use the fact that if a = b (mod p) and a = b (mod q)

where p, q are primes then a = b (mod pq).

Block algorithms

Given encryption and decryption algorithms that work on blocks of fixed

sizes (e.g. 64 bits), how to deal with messages of arbitrary sizes.

Electronic Codebook Mode (ECB): encrypt each block independently.

{P1 . . . Pn}k = {P1}k . . . {Pn}k

This is similar to looking up in a dictionary with 264 entries.

Subject to block replay attacks.

Example of block replay attack.

Interbank money transfers:

Date/Timestamp 1 block

Sending bank name 1 block

Receiving bank name 1 block

Depositor’s Name 6 blocks

Depositor’s Account 2 blocks

Amount of deposit 1 block

Cipher Block Chaining Mode (CBC)

encrypt encrypt encrypt

P1 P2 P3

IV

EK (P1 ⊕ IV) EK (P2 ⊕ C1)

C1 C2 C3

Key K Key K Key K

EK (P3 ⊕ C2)

Encryption Decryption

C1 = EK(IV ⊕ P1) P1 = DK(C1)⊕ IV

C2 = EK(C1 ⊕ P2) P2 = DK(C2)⊕ C1

C3 = EK(C2 ⊕ P3) P3 = DK(C3)⊕ C2

Choose a random initialization vector (IV) for each message.

