
Stream Ciphers

Keystream
Generator

Keystream
Generator

Keystream Keystream

Plaintext Ciphertext Plaintext

Key K Key K

Ki
Ki

Pi

Ci

Pi

Ci = Pi ⊕Ki Pi = Ci ⊕Ki



The intruder deduction problem



The Dolev Yao model
A set of assumptions to make reasoning about cryptographic protocols

feasible. Based on the paper On the security of public key protocols by D.

Dolev and A. C. Yao (1983).

Network

by intruder Agent 3

Agent 4

Agent 2

Agent 1
controlled



First part of the assumptions: the network is completely insecure.

• All messages sent by agents are actually sent to the intruder.

• All messages received by agents are actually received by the intruder.

• Hence the intruder can read all messages, delete them, modify them,

. . .

• The intruder also remembers all messages ever sent over the network.

• Besides, the intruder can create nonces, encrypt and decrypt messages

using known keys. . .



Second part of the assumptions: perfect cryptography

• The plaintext m cannot be obtained from the ciphertext {m}k except

by knowing the key k−1.

• If {m}k = {m′}k′ then m = m′ and k = k′.

• {. . . {m}k . . .}k 6= m.

• A nonce is distinct from other nonces and messages

• . . .

This is summarized by considering messages as symbolic terms.



m ::= c constants: identities, nonces

enc(m1,m2) representing {m1}m2

pair(m1,m2) representing pair 〈m1,m2〉

h(m) hash

. . .

We have rules of the form:

If intruder knows m1 and he knows m2 then he knows {m1}m2 .

If intruder knows enc(m1,m2) and he knows m2 then he knows m1.

. . .

Hence starting from a given set of messages an intruder can compute

possibly infinitely many new messages.



m ::= c constants: identities, nonces

enc(m1,m2) representing {m1}m2

pair(m1,m2) representing pair 〈m1,m2〉

h(m) hash

. . .

We have rules of the form:

If intruder knows m1 and he knows m2 then he knows {m1}m2 .

If intruder knows enc(m1,m2) and he knows m2 then he knows m1.

. . .

Hence starting from a given set of messages an intruder can compute

possibly infinitely many new messages.



Suppose the intruder knows the messages

{{m1}m5}〈m2,m3〉 {m5}m6 {m2}m4 {m3}m4 m4

Can the intruder compute the message {m1}m5 ?

Yes. He computes: m2, m3, 〈m2,m3〉, {m1}m5

Can he compute m1 ? No.

Given a finite set S of messages and a message m how to check if the

intruder can compute m from S ? . . . and efficiently.

This is called the intruder deduction problem : S
?

` m.

The most basic problem related to the secrecy property of cryptographic

protocols. At least it solves the secrecy problem for a passive intruder for

finitely many sessions.



Suppose the intruder knows the messages

{{m1}m5}〈m2,m3〉 {m5}m6 {m2}m4 {m3}m4 m4

Can the intruder compute the message {m1}m5 ?

Yes. He computes: m2, m3, 〈m2,m3〉, {m1}m5

Can he compute m1 ? No.

Given a finite set S of messages and a message m how to check if the

intruder can compute m from S ? . . . and efficiently.

This is called the intruder deduction problem : S
?

` m.

The most basic problem related to the secrecy property of cryptographic

protocols. At least it solves the secrecy problem for a passive intruder for

finitely many sessions.



Suppose the intruder knows the messages

{{m1}m5}〈m2,m3〉 {m5}m6 {m2}m4 {m3}m4 m4

Can the intruder compute the message {m1}m5 ?

Yes. He computes: m2, m3, 〈m2,m3〉, {m1}m5

Can he compute m1 ?

No.

Given a finite set S of messages and a message m how to check if the

intruder can compute m from S ? . . . and efficiently.

This is called the intruder deduction problem : S
?

` m.

The most basic problem related to the secrecy property of cryptographic

protocols. At least it solves the secrecy problem for a passive intruder for

finitely many sessions.



Suppose the intruder knows the messages

{{m1}m5}〈m2,m3〉 {m5}m6 {m2}m4 {m3}m4 m4

Can the intruder compute the message {m1}m5 ?

Yes. He computes: m2, m3, 〈m2,m3〉, {m1}m5

Can he compute m1 ? No.

Given a finite set S of messages and a message m how to check if the

intruder can compute m from S ? . . . and efficiently.

This is called the intruder deduction problem : S
?

` m.

The most basic problem related to the secrecy property of cryptographic

protocols. At least it solves the secrecy problem for a passive intruder for

finitely many sessions.



Suppose the intruder knows the messages

{{m1}m5}〈m2,m3〉 {m5}m6 {m2}m4 {m3}m4 m4

Can the intruder compute the message {m1}m5 ?

Yes. He computes: m2, m3, 〈m2,m3〉, {m1}m5

Can he compute m1 ? No.

Given a finite set S of messages and a message m how to check if the

intruder can compute m from S ? . . . and efficiently.

This is called the intruder deduction problem : S
?

` m.

The most basic problem related to the secrecy property of cryptographic

protocols. At least it solves the secrecy problem for a passive intruder for

finitely many sessions.



Rules expressing the intruder knowledge

Member: m ∈ S
S ` m

Intruder can synthesize messages

Pairing:
S ` m1 S ` m2

S ` 〈m1,m2〉

Encryption:
S ` m1 S ` m2

S ` {m1}m2

FunctionApplication:
S ` m1 . . . S ` mn

S ` h(m1, . . . ,mn)



Intruder can analyze messages

Unpairing:
S ` 〈m1,m2〉

i ∈ {1, 2}
S ` mi

DecryptionSym:
S ` {m1}m2 S ` m2

m2 is symmetric
S ` m1

DecryptionAsym:
S ` {m}k S ` k′

k′ is inverse key of k
S ` m

We consider asymmetric encryption to involve only atomic keys.

FunctionInversion:
S ` h(m1, . . . ,mn)

h is invertible, 1 ≤ i ≤ n
S ` mi



Example of a derivation using the inference rules.

Let S = {〈m1,m2〉,m3, {m4}〈m1,m3〉}

Then m4 is deducible from S:

S ` {m4}〈m1,m3〉

S ` 〈m1,m2〉

S ` m1 S ` m3

S ` 〈m1,m3〉

S ` m4

The intruder deduction problem is now: is there a derivation of S ` m

using these rules ?



Here is another derivation possible of S ` m4!

S ` {m4}〈m1,m3〉

S ` 〈m1,m2〉

S ` m1 S ` m3

S ` 〈m1,m3〉

S ` m4 S ` m3

S ` {m4}m3 S ` m3

S ` m4

All derivations are not short enough!



Simplification rules

1. The derivation
δ1
···

S ` m1

δ2
···

S ` m2

S ` 〈m1,m2〉

S ` mi

where i ∈ {1, 2} can be simplified to

δ1
···

S ` m1



2. The derivation
δ1
···

S ` m1

δ2
···

S ` m2

S ` {m1}m2

δ3
···

S ` m′
2

S ` m1

can be simplified to
δ1
···

S ` m1



3. The derivation
δ1
···

S ` m1 . . .

δ2
···

S ` m2

S ` h(m1, . . . ,mn)

S ` mi

can be simplified to
δi
···

S ` mi



Given any derivation, we can repeatedly apply the above simplification rules

on the subderivations to get simpler derivations.

This process always terminates, because the simplification rules strictly

decrease the size of the derivation.

Define normal derivation as a derivation which cannot be simplified further.

If S ` m is derivable using our inference rules then there is a normal

derivation of S ` m using these inference rules.s



Let sub(S) denote the set of all subterms of terms in the set S.

The subterm property: If
δ
···

S ` m

is a normal derivation, then δ involves only the messages in sub(S ∪ {m}).

Hence to check whether some message m is deducible from S, we don’t

need to deduce arbitrarily large messages.

Proof: Do induction on the size of the derivation of S ` m.



Case 1: δ is of the from

S ` m

where m ∈ S. There is nothing to prove.



Case 2: m = 〈m1,m2〉 and δ is of the form

δ1
···

S ` m1

δ2
···

S ` m2

S ` 〈m1,m2〉

By induction hypothesis δi involves only messages in sub(S ∪ {mi}).

Hence δ involves only the messages from S ∪ {〈m1,m2〉}.



Case 3: m = {m1}m2 and δ is of the form

δ1
···

S ` m1

δ2
···

S ` m2

S ` {m1}m2

By induction hypothesis δi involves messages in sub(S ∪ {mi}).

Hence δ involves only the messages from S ∪ {〈m1,m2〉}.



Case 4: m = h(m1, . . . ,mn) and δ is of the form

δ1
···

S ` m1 . . .

δn
···

S ` mn

S ` h(m1, . . . ,mn)

By induction hypothesis δi involves only messages in sub(S ∪ {mi}). Hence

δ involves only the messages from S ∪ {h(m1, . . . ,mn)}.



Case 5: δ is of the form
δ′
···

S ` 〈m1,m2〉

S ` mi

for some i ∈ {1, 2}. By induction hypothesis, δ′ involves only messages

from sub(S ∪ {〈m1,m2〉}).

If 〈m1,m2〉 ∈ sub(S) then there is nothing to prove.

Otherwise consider the last inference rule used in δ ′.



The last inference rule used in δ′ cannot be the ‘Member’ rule because

〈m1,m2〉 /∈ sub(S).

The last inference rule used in δ′ cannot be an analysis rule because it

would involve strict superterms of 〈m1,m2〉 which are not in sub(S).

The last inference rule used in δ′ cannot be ‘Encryption’ or

‘FunctionApplication’ because they don’t create pairs.

Hence δ′ is of the from
δ1
···

S ` m1

δ2
···

S ` m2

S ` 〈m1,m2〉



In other words, δ is of the form

δ1
···

S ` m1

δ2
···

S ` m2

S ` 〈m1,m2〉

S ` mi

But then δ can be simplified to the derivation δi.

Hence δ is not normal, giving a contradiction.



Case 6: δ is of the form

δ1
···

S ` {m}m1

δ2
···

S ` m1

S ` m

By induction hypothesis, δ1 involves only messages from sub(S ∪{{m}m1}).

If {m}m1 ∈ sub(S) then there is nothing to prove.

Otherwise consider the last inference rule used in δ1.



The last inference rule used in δ1 cannot be the ‘Member’ rule because

{m}m1 /∈ sub(S).

The last inference rule used in δ1 cannot be an analysis rule because they

would involve strict superterms of {m}m1 which are not in sub(S).

The last inference rule used in δ′ cannot be ‘Pairing’ or

‘FunctionApplication’ because they cannot create {m}m1 . Hence δ1 is of

the from
δ′1
···

I ` m

δ′′1
···

I ` m1

I ` {m}m1

But then δ is not normal, giving contradiction.



Case 7: δ is of the form

δ1
···

S ` {m}k

δ2
···

S ` k′

S ` m

By induction hypothesis, δ2 involves only messages from sub(S) ∪ {k′}. If

k′ /∈ sub(S) then we have a contradiction. Hence δ2 involves only messages

from sub(S).

By induction hypothesis, δ1 involves only messages from sub(S ∪ {{m}k}).

If {m}k ∈ sub(S) then there is nothing to prove.

Otherwise consider the last inference rule used in δ1.



The last inference rule used in δ1 cannot be the ‘Member’ rule because

{m}k /∈ sub(S).

The last inference rule used in δ1 cannot be an analysis rule because they

would involve strict superterms of {m}k which are not in sub(S).

The last inference rule used in δ′ cannot be ‘Pairing’ or

‘FunctionApplication’ because they cannot create {m}k. Hence δ1 is of the

from
δ′1
···

I ` m

δ′′1
···

I ` k

I ` {m}k

But then δ is not normal, giving contradiction.



Case 8: δ is of the form

δ′
···

S ` h(m1, . . . ,mn)

S ` mi

for some i ∈ {1, . . . , n}. By induction hypothesis, δ′ involves only messages

from sub(S ∪ {h(m1, . . . ,mn)}).

If h(m1, . . . ,mn) ∈ sub(S) then there is nothing to prove.

Otherwise consider the last inference rule used in δ ′.



The last inference rule used in δ′ cannot be the ‘Member’ rule because

h(m1, . . . ,m2) /∈ sub(S). The last inference rule used in δ′ cannot be an

analysis rule because they would involve strict superterms of h(m1, . . . ,mn)

which are not in sub(S).

The last inference rule used in δ′ cannot be ‘Encryption’ or

‘FunctionApplication’ because they don’t create pairs. Hence δ ′ is of the

from
δ1
···

S ` m1 . . .

δ2
···

S ` mn

S ` h(m1, . . . ,mn)

But then δ is not normal, giving a contradiction.

End of proof



Algorithm for the intruder deduction problem:

Input: set S of messages and message m

BEGIN

T ← sub(S ∪ {m}).

X ← ∅

REPEAT

if some m′ ∈ T can be obtained from the messages in X

using one of the inference rules, and m′ /∈ X

then X ← X ∪ {m′}.

UNTIL no new messages can be added

If m ∈ X then RETURN ‘yes’ else RETURN ‘no’

END



Define size(m) to be the size of the DAG-representation of m

and size(S) =
∑

m′∈S size(m′).

We have cardinality(T ) ≤ size(S) + size(m).

The REPEAT-UNTIL loop is executed at most cardinality(T ) times.

Each execution of the loop takes time polynomial in cardinality(T ).

Conclusion: The intruder deduction problem can be decided in polynomial

time.

Exercise: how to do this is linear time ?



Define size(m) to be the size of the DAG-representation of m

and size(S) =
∑

m′∈S size(m′).

We have cardinality(T ) ≤ size(S) + size(m).

The REPEAT-UNTIL loop is executed at most cardinality(T ) times.

Each execution of the loop takes time polynomial in cardinality(T ).

Conclusion: The intruder deduction problem can be decided in polynomial

time.

Exercise: how to do this is linear time ?



Special case: the two-phase intruder

In the above discussion, compound messages were allowed as keys for

symmetric encryption. We now allow only atomic keys to be used for

encryption and decryption.

Then it is sufficient for the intruder to deduce new messages from a given

set S of messages in two phases:

Analysis phase: the intruder applies the analysis rules to get simpler

messages.

Synthesis phase: the intruder applies the synthesis rules to create complex

messages starting from the messages from the previous step.



This does not hold if compound keys are used:

Let S = {〈m1,m2〉,m3, {m4}〈m1,m3〉}

S ` {m4}〈m1,m3〉

S ` 〈m1,m2〉

S ` m1 S ` m3

S ` 〈m1,m3〉

S ` m4

The above derivation is normal but an analysis step occurs after a synthesis

step.



Fact: If keys are restricted to be atomic then in any normal derivation, no

analysis rule occurs after a synthesis rule.

Proof: Consider all the analysis rules.

1.

δ
···

S ` 〈m1,m2〉

S ` mi

The only synthesis rule that can occur above it is the pairing rule. But then

the derivation would not be normal.



2. The main case:

δ1
···

S ` {m1}m2

δ2
···

S ` m2

S ` m1

By assumption m2 is atomic hence no synthesis rule can occur in δ2. The

only synthesis rule that can occur above above S ` {m1}m2 is an

encryption rule. But then the derivation would not be normal.

3.

δ1
···

S ` {m}k

δ2
···

S ` k′

S ` m

As the keys k, k′ are atomic this case is similar to the previous one.



4.

δ
···

S ` h(m1, . . . ,mn)

S ` mi

The only synthesis rule that can occur above it is the ‘FunctionApplication’

rule. But then the derivation would not be normal.

End of proof

Hence the algorithm for the intruder deduction problem in the case of

atomic keys can be modified to first exhaustively apply the analysis rules

and then exhaustively apply the synthesis rules.



The TLS protocol



TLS (Transport Layer Security) Version 1.0

succeeds

SSL (Secure Sockets Layer) Version 3.0

Designed for secure communication on the Internet e.g. for commercial

transactions.

We will use the analysis of this protocol by

Lawrence C. Paulson (Univ. Cambridge):

Inductive Analysis of the Internet Protocol TLS

Transactions on Computer and System Security 2(3):332-351, 1999.

Such an analysis involves some abstractions from the actual protocol.



A, Na, Sid, Pa
client hello

client server

The Handshake protocol

Sid is the session identifier.

Pa contains the client’s

preferences for encryption

method, etc.



A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

client server

Pb contains the server’s pref-

erences.



A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

client server



A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

cert(A, Ka)
client certificate

client server



A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

cert(A, Ka)
client certificate

{PMS}Kb
client key exchange

client server

PMS, the Pre-Master-

Secret, is a nonce.



A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

cert(A, Ka)
client certificate

{PMS}Kb
client key exchange

{Hash(Nb, B, PMS)}
Ka−1

certificate verify

client server



Finished = Hash(M, messages)

A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

cert(A, Ka)
client certificate

{PMS}Kb
client key exchange

{Hash(Nb, B, PMS)}
Ka−1

certificate verify

M = PRF (PMS, Na, Nb)

{Finished}clientK(Na,Nb,M)

client finished

client server

M is the Master-Secret.

PRF : Pseudo-Random

Function

messages is the set of all

messages exchanged so far.



Finished = Hash(M, messages)

{Finished}serverK(Na,Nb,M)

A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

cert(A, Ka)
client certificate

{PMS}Kb
client key exchange

{Hash(Nb, B, PMS)}
Ka−1

certificate verify

M = PRF (PMS, Na, Nb)

{Finished}clientK(Na,Nb,M)

client finished

server finished

client server

Each side should receive the

finish message before contin-

uing, to prevent the cipher-

suite rollback attack of SSL

Version 3.0:

the encryption preferences

Pa and Pb can be changed

be the intruder to request

weak encryption.


