Stream Ciphers

The intruder deduction problem

The Dolev Yao model

A set of assumptions to make reasoning about cryptographic protocols feasible. Based on the paper On the security of public key protocols by D. Dolev and A. C. Yao (1983).

First part of the assumptions: the network is completely insecure.

- All messages sent by agents are actually sent to the intruder.
- All messages received by agents are actually received by the intruder.
- Hence the intruder can read all messages, delete them, modify them,
- The intruder also remembers all messages ever sent over the network.
- Besides, the intruder can create nonces, encrypt and decrypt messages using known keys...

Second part of the assumptions: perfect cryptography

- The plaintext m cannot be obtained from the ciphertext $\{m\}_{k}$ except by knowing the key k^{-1}.
- If $\{m\}_{k}=\left\{m^{\prime}\right\}_{k^{\prime}}$ then $m=m^{\prime}$ and $k=k^{\prime}$.
- $\left\{\ldots\{m\}_{k} \ldots\right\}_{k} \neq m$.
- A nonce is distinct from other nonces and messages

This is summarized by considering messages as symbolic terms.
$m::=c$
enc $\left(m_{1}, m_{2}\right) \quad$ representing $\left\{m_{1}\right\}_{m_{2}}$
$\operatorname{pair}\left(m_{1}, m_{2}\right) \quad$ representing pair $\left\langle m_{1}, m_{2}\right\rangle$
$\mathrm{h}(m)$ hash
$m::=\quad$ constants: identities, nonces

```
enc(m},\mp@subsup{m}{1}{},\mp@subsup{m}{2}{})\quad\mathrm{ representing {m, }}\mp@subsup{}}{\mp@subsup{m}{2}{}}{
pair}(\mp@subsup{m}{1}{},\mp@subsup{m}{2}{})\quad\mathrm{ representing pair }\langle\mp@subsup{m}{1}{},\mp@subsup{m}{2}{}
h}(m)\quadhas
```

We have rules of the form:
If intruder knows m_{1} and he knows m_{2} then he knows $\left\{m_{1}\right\}_{m_{2}}$.
If intruder knows enc $\left(m_{1}, m_{2}\right)$ and he knows m_{2} then he knows m_{1}.

Hence starting from a given set of messages an intruder can compute possibly infinitely many new messages.

Suppose the intruder knows the messages
$\left\{\left\{m_{1}\right\}_{m_{5}}\right\}_{\left\langle m_{2}, m_{3}\right\rangle} \quad\left\{m_{5}\right\}_{m_{6}} \quad\left\{m_{2}\right\}_{m_{4}} \quad\left\{m_{3}\right\}_{m_{4}} \quad m_{4}$
Can the intruder compute the message $\left\{m_{1}\right\}_{m_{5}}$?

Suppose the intruder knows the messages
$\left\{\left\{m_{1}\right\}_{m_{5}}\right\}_{\left\langle m_{2}, m_{3}\right\rangle} \quad\left\{m_{5}\right\}_{m_{6}} \quad\left\{m_{2}\right\}_{m_{4}} \quad\left\{m_{3}\right\}_{m_{4}} \quad m_{4}$
Can the intruder compute the message $\left\{m_{1}\right\}_{m_{5}}$?
Yes. He computes: $m_{2}, m_{3},\left\langle m_{2}, m_{3}\right\rangle,\left\{m_{1}\right\}_{m_{5}}$

Suppose the intruder knows the messages
$\left\{\left\{m_{1}\right\}_{m_{5}}\right\}_{\left\langle m_{2}, m_{3}\right\rangle} \quad\left\{m_{5}\right\}_{m_{6}} \quad\left\{m_{2}\right\}_{m_{4}} \quad\left\{m_{3}\right\}_{m_{4}} \quad m_{4}$
Can the intruder compute the message $\left\{m_{1}\right\}_{m_{5}}$?
Yes. He computes: $m_{2}, m_{3},\left\langle m_{2}, m_{3}\right\rangle,\left\{m_{1}\right\}_{m_{5}}$
Can he compute m_{1} ?

Suppose the intruder knows the messages
$\left\{\left\{m_{1}\right\}_{m_{5}}\right\}_{\left\langle m_{2}, m_{3}\right\rangle} \quad\left\{m_{5}\right\}_{m_{6}} \quad\left\{m_{2}\right\}_{m_{4}} \quad\left\{m_{3}\right\}_{m_{4}} \quad m_{4}$
Can the intruder compute the message $\left\{m_{1}\right\}_{m_{5}}$?
Yes. He computes: $m_{2}, m_{3},\left\langle m_{2}, m_{3}\right\rangle,\left\{m_{1}\right\}_{m_{5}}$
Can he compute m_{1} ? No.

Suppose the intruder knows the messages
$\left\{\left\{m_{1}\right\}_{m_{5}}\right\}_{\left\langle m_{2}, m_{3}\right\rangle} \quad\left\{m_{5}\right\}_{m_{6}} \quad\left\{m_{2}\right\}_{m_{4}} \quad\left\{m_{3}\right\}_{m_{4}} \quad m_{4}$
Can the intruder compute the message $\left\{m_{1}\right\}_{m_{5}}$?
Yes. He computes: $m_{2}, m_{3},\left\langle m_{2}, m_{3}\right\rangle,\left\{m_{1}\right\}_{m_{5}}$
Can he compute m_{1} ? No.
Given a finite set S of messages and a message m how to check if the intruder can compute m from S ? ... and efficiently.

This is called the intruder deduction problem : $S \vdash \mathrm{\vdash}$.
The most basic problem related to the secrecy property of cryptographic protocols. At least it solves the secrecy problem for a passive intruder for finitely many sessions.

Rules expressing the intruder knowledge

$$
\text { Member: } \quad \overline{S \vdash m} m \in S
$$

Intruder can synthesize messages

$$
\begin{array}{cc}
\text { Pairing: } & \frac{S \vdash m_{1} S \vdash m_{2}}{S \vdash\left\langle m_{1}, m_{2}\right\rangle} \\
\text { Encryption: } & \frac{S \vdash m_{1} \quad S \vdash m_{2}}{S \vdash\left\{m_{1}\right\}_{m_{2}}}
\end{array}
$$

FunctionApplication: $\frac{S \vdash m_{1} \quad \ldots \quad S \vdash m_{n}}{S \vdash h\left(m_{1}, \ldots, m_{n}\right)}$

Intruder can analyze messages

$$
\text { Unpairing: } \quad \frac{S \vdash\left\langle m_{1}, m_{2}\right\rangle}{S \vdash m_{i}} i \in\{1,2\}
$$

DecryptionSym: $\quad \frac{S \vdash\left\{m_{1}\right\}_{m_{2}} \quad S \vdash m_{2}}{S \vdash m_{1}} m_{2}$ is symmetric
DecryptionAsym: $\quad \frac{S \vdash\{m\}_{k} S \vdash k^{\prime}}{S \vdash m} k^{\prime}$ is inverse key of k
We consider asymmetric encryption to involve only atomic keys.
FunctionInversion: $\quad \frac{S \vdash h\left(m_{1}, \ldots, m_{n}\right)}{S \vdash m_{i}} h$ is invertible, $1 \leq i \leq n$

Example of a derivation using the inference rules.
Let $S=\left\{\left\langle m_{1}, m_{2}\right\rangle, m_{3},\left\{m_{4}\right\}_{\left\langle m_{1}, m_{3}\right\rangle}\right\}$
Then m_{4} is deducible from S :

The intruder deduction problem is now: is there a derivation of $S \vdash m$ using these rules?

Here is another derivation possible of $S \vdash m_{4}$!

All derivations are not short enough!

Simplification rules

1. The derivation

$$
\begin{array}{cc}
\delta_{1} & \delta_{2} \\
\vdots & \vdots \\
\frac{S \vdash m_{1}}{} \quad S \vdash m_{2} \\
\frac{S \vdash\left\langle m_{1}, m_{2}\right\rangle}{S \vdash m_{i}}
\end{array}
$$

where $i \in\{1,2\}$ can be simplified to

$$
\begin{gathered}
\delta_{1} \\
\vdots \\
S \vdash m_{1}
\end{gathered}
$$

2. The derivation

\[

\]

can be simplified to

$$
\begin{gathered}
\delta_{1} \\
\vdots \\
S \vdash m_{1}
\end{gathered}
$$

3. The derivation

$$
\begin{array}{ccc}
\begin{array}{c}
\delta_{1} \\
\vdots \\
\vdash
\end{array} & \begin{array}{c}
\delta_{2} \\
S \vdash \\
\hline
\end{array} \quad \ldots & S \vdash m_{2} \\
\frac{S \vdash h\left(m_{1}, \ldots, m_{n}\right)}{S \vdash}
\end{array}
$$

can be simplified to

$$
\begin{gathered}
\delta_{i} \\
\vdots \\
S \vdash m_{i}
\end{gathered}
$$

Given any derivation, we can repeatedly apply the above simplification rules on the subderivations to get simpler derivations.

This process always terminates, because the simplification rules strictly decrease the size of the derivation.

Define normal derivation as a derivation which cannot be simplified further.

If $S \vdash m$ is derivable using our inference rules then there is a normal derivation of $S \vdash m$ using these inference rules.s

Let $\operatorname{sub}(S)$ denote the set of all subterms of terms in the set S.

The subterm property: If

is a normal derivation, then δ involves only the messages in $\operatorname{sub}(S \cup\{m\})$.

Hence to check whether some message m is deducible from S, we don't need to deduce arbitrarily large messages.

Proof: Do induction on the size of the derivation of $S \vdash m$.

Case 1: δ is of the from

$\overline{S \vdash m}$
where $m \in S$. There is nothing to prove.

Case 2: $m=\left\langle m_{1}, m_{2}\right\rangle$ and δ is of the form

By induction hypothesis δ_{i} involves only messages in $\operatorname{sub}\left(S \cup\left\{m_{i}\right\}\right)$. Hence δ involves only the messages from $S \cup\left\{\left\langle m_{1}, m_{2}\right\rangle\right\}$.

Case 3: $m=\left\{m_{1}\right\}_{m_{2}}$ and δ is of the form

By induction hypothesis δ_{i} involves messages in $\operatorname{sub}\left(S \cup\left\{m_{i}\right\}\right)$. Hence δ involves only the messages from $S \cup\left\{\left\langle m_{1}, m_{2}\right\rangle\right\}$.

Case 4: $m=h\left(m_{1}, \ldots, m_{n}\right)$ and δ is of the form

By induction hypothesis δ_{i} involves only messages in $\operatorname{sub}\left(S \cup\left\{m_{i}\right\}\right)$. Hence δ involves only the messages from $S \cup\left\{h\left(m_{1}, \ldots, m_{n}\right)\right\}$.

Case 5: δ is of the form

$$
\begin{gathered}
\stackrel{\delta^{\prime}}{\vdots} \\
\frac{S \vdash\left\langle m_{1}, m_{2}\right\rangle}{S \vdash m_{i}}
\end{gathered}
$$

for some $i \in\{1,2\}$. By induction hypothesis, δ^{\prime} involves only messages from $\operatorname{sub}\left(S \cup\left\{\left\langle m_{1}, m_{2}\right\rangle\right\}\right)$.

If $\left\langle m_{1}, m_{2}\right\rangle \in \operatorname{sub}(S)$ then there is nothing to prove.
Otherwise consider the last inference rule used in δ^{\prime}.

The last inference rule used in δ^{\prime} cannot be the 'Member' rule because $\left\langle m_{1}, m_{2}\right\rangle \notin \operatorname{sub}(S)$.

The last inference rule used in δ^{\prime} cannot be an analysis rule because it would involve strict superterms of $\left\langle m_{1}, m_{2}\right\rangle$ which are not in $\operatorname{sub}(S)$.

The last inference rule used in δ^{\prime} cannot be 'Encryption' or 'FunctionApplication' because they don't create pairs. Hence δ^{\prime} is of the from

$$
\begin{array}{cc}
\delta_{1} & \delta_{2} \\
\vdots & \vdots \\
\frac{S \vdash m_{1}}{} \quad S \vdash m_{2} \\
S \vdash\left\langle m_{1}, m_{2}\right\rangle
\end{array}
$$

In other words, δ is of the form

But then δ can be simplified to the derivation δ_{i}. Hence δ is not normal, giving a contradiction.

Case 6: δ is of the form

By induction hypothesis, δ_{1} involves only messages from $\operatorname{sub}\left(S \cup\left\{\{m\}_{m_{1}}\right\}\right)$.
If $\{m\}_{m_{1}} \in \operatorname{sub}(S)$ then there is nothing to prove.
Otherwise consider the last inference rule used in δ_{1}.

The last inference rule used in δ_{1} cannot be the 'Member' rule because $\{m\}_{m_{1}} \notin \operatorname{sub}(S)$.

The last inference rule used in δ_{1} cannot be an analysis rule because they would involve strict superterms of $\{m\}_{m_{1}}$ which are not in $\operatorname{sub}(S)$.

The last inference rule used in δ^{\prime} cannot be 'Pairing' or 'FunctionApplication' because they cannot create $\{m\}_{m_{1}}$. Hence δ_{1} is of the from

$$
\begin{array}{cc}
\delta_{1}^{\prime} & \delta_{1}^{\prime \prime} \\
\vdots & \vdots \\
I \vdash m & I \vdash m_{1} \\
\hline I \vdash\{m\}_{m_{1}}
\end{array}
$$

But then δ is not normal, giving contradiction.

Case 7: δ is of the form

By induction hypothesis, δ_{2} involves only messages from $\operatorname{sub}(S) \cup\left\{k^{\prime}\right\}$. If $k^{\prime} \notin \operatorname{sub}(S)$ then we have a contradiction. Hence δ_{2} involves only messages from $\operatorname{sub}(S)$.

By induction hypothesis, δ_{1} involves only messages from $\operatorname{sub}\left(S \cup\left\{\{m\}_{k}\right\}\right)$.
If $\{m\}_{k} \in \operatorname{sub}(S)$ then there is nothing to prove.
Otherwise consider the last inference rule used in δ_{1}.

The last inference rule used in δ_{1} cannot be the 'Member' rule because $\{m\}_{k} \notin \operatorname{sub}(S)$.

The last inference rule used in δ_{1} cannot be an analysis rule because they would involve strict superterms of $\{m\}_{k}$ which are not in $\operatorname{sub}(S)$.

The last inference rule used in δ^{\prime} cannot be 'Pairing' or 'FunctionApplication' because they cannot create $\{m\}_{k}$. Hence δ_{1} is of the from

$$
\begin{array}{cc}
\delta_{1}^{\prime} & \delta_{1}^{\prime \prime} \\
\vdots & \vdots \\
I \vdash m & I \vdash k \\
\hline I \vdash\{m\}_{k}
\end{array}
$$

But then δ is not normal, giving contradiction.

Case 8: δ is of the form

$$
\begin{gathered}
\stackrel{\delta^{\prime}}{\vdots} \\
\frac{S \vdash h\left(m_{1}, \ldots, m_{n}\right)}{S \vdash m_{i}}
\end{gathered}
$$

for some $i \in\{1, \ldots, n\}$. By induction hypothesis, δ^{\prime} involves only messages from $\operatorname{sub}\left(S \cup\left\{h\left(m_{1}, \ldots, m_{n}\right)\right\}\right)$.

If $h\left(m_{1}, \ldots, m_{n}\right) \in \operatorname{sub}(S)$ then there is nothing to prove.
Otherwise consider the last inference rule used in δ^{\prime}.

The last inference rule used in δ^{\prime} cannot be the 'Member' rule because $h\left(m_{1}, \ldots, m_{2}\right) \notin \operatorname{sub}(S)$. The last inference rule used in δ^{\prime} cannot be an analysis rule because they would involve strict superterms of $h\left(m_{1}, \ldots, m_{n}\right)$ which are not in $\operatorname{sub}(S)$.
The last inference rule used in δ^{\prime} cannot be 'Encryption' or 'FunctionApplication' because they don't create pairs. Hence δ ' is of the from

But then δ is not normal, giving a contradiction.
End of proof

Algorithm for the intruder deduction problem:
Input: set S of messages and message m

BEGIN

$T \leftarrow \operatorname{sub}(S \cup\{m\})$.
$X \leftarrow \emptyset$

REPEAT

if some $m^{\prime} \in T$ can be obtained from the messages in X using one of the inference rules, and $m^{\prime} \notin X$ then $X \leftarrow X \cup\left\{m^{\prime}\right\}$.
UNTIL no new messages can be added
If $m \in X$ then RETURN 'yes' else RETURN 'no'
END

Define size(m) to be the size of the DAG-representation of m and $\operatorname{size}(S)=\sum_{m^{\prime} \in S} \operatorname{size}\left(m^{\prime}\right)$.

We have $\operatorname{cardinality}(T) \leq \operatorname{size}(S)+\operatorname{size}(m)$.
The REPEAT-UNTIL loop is executed at most cardinality (T) times.
Each execution of the loop takes time polynomial in cardinality (T).

Conclusion: The intruder deduction problem can be decided in polynomial time.

Define $\operatorname{size}(m)$ to be the size of the DAG-representation of m and $\operatorname{size}(S)=\sum_{m^{\prime} \in S} \operatorname{size}\left(m^{\prime}\right)$.

We have $\operatorname{cardinality}(T) \leq \operatorname{size}(S)+\operatorname{size}(m)$.
The REPEAT-UNTIL loop is executed at most cardinality (T) times.
Each execution of the loop takes time polynomial in cardinality (T).

Conclusion: The intruder deduction problem can be decided in polynomial time.

Exercise: how to do this is linear time ?

Special case: the two-phase intruder

In the above discussion, compound messages were allowed as keys for symmetric encryption. We now allow only atomic keys to be used for encryption and decryption.

Then it is sufficient for the intruder to deduce new messages from a given set S of messages in two phases:

Analysis phase: the intruder applies the analysis rules to get simpler messages.

Synthesis phase: the intruder applies the synthesis rules to create complex messages starting from the messages from the previous step.

This does not hold if compound keys are used:
Let $S=\left\{\left\langle m_{1}, m_{2}\right\rangle, m_{3},\left\{m_{4}\right\}_{\left\langle m_{1}, m_{3}\right\rangle}\right\}$
$\frac{\frac{\overline{S \vdash\left\langle m_{1}, m_{2}\right\rangle}}{\frac{S \vdash m_{1}}{S \vdash\left\langle m_{1}, m_{3}\right\rangle}} \overline{S \vdash m_{3}}}{}$

The above derivation is normal but an analysis step occurs after a synthesis step.

Fact: If keys are restricted to be atomic then in any normal derivation, no analysis rule occurs after a synthesis rule.

Proof: Consider all the analysis rules.

1. $\begin{gathered}\delta \\ \vdots \\ \\ \frac{S \vdash\left\langle m_{1}, m_{2}\right\rangle}{S \vdash m_{i}}\end{gathered}$

The only synthesis rule that can occur above it is the pairing rule. But then the derivation would not be normal.
2. The main case:

By assumption m_{2} is atomic hence no synthesis rule can occur in δ_{2}. The only synthesis rule that can occur above above $S \vdash\left\{m_{1}\right\}_{m_{2}}$ is an encryption rule. But then the derivation would not be normal.
3.

As the keys k, k^{\prime} are atomic this case is similar to the previous one.
4.

$$
\frac{S \vdash h\left(m_{1}, \ldots, m_{n}\right)}{S \vdash m_{i}}
$$

The only synthesis rule that can occur above it is the 'FunctionApplication' rule. But then the derivation would not be normal.

End of proof

Hence the algorithm for the intruder deduction problem in the case of atomic keys can be modified to first exhaustively apply the analysis rules and then exhaustively apply the synthesis rules.

The TLS protocol

TLS (Transport Layer Security) Version 1.0
succeeds
SSL (Secure Sockets Layer) Version 3.0
Designed for secure communication on the Internet e.g. for commercial transactions.

We will use the analysis of this protocol by
Lawrence C. Paulson (Univ. Cambridge):
Inductive Analysis of the Internet Protocol TLS
Transactions on Computer and System Security 2(3):332-351, 1999.

Such an analysis involves some abstractions from the actual protocol.

The Handshake protocol

Sid is the session identifier.
Pa contains the client's preferences for encryption method, etc.

Pb contains the server's preferences.

$P M S$, the Pre-Master-
Secret, is a nonce.

$\{\operatorname{Hash}(N b, B, P M S)\}_{K a-1}$

$M=P R F(P M S, N a, N b)$
Finished $=\operatorname{Hash}(M$, messages $)$
$\{\text { Finished }\}_{\text {client }}(N a, N b, M)$ client finished

M is the Master-Secret.
 $P R F$:
 Pseudo-Random

Function

messages is the set of all messages exchanged so far.

Each side should receive the finish message before continuing, to prevent the ciphersuite rollback attack of SSL Version 3.0:
the encryption preferences
$P a$ and $P b$ can be changed be the intruder to request weak encryption.

