
For issuing certificates we assume an authentication server S with public

and private keys KS and K−1
S respectively.

Certificates are of the form cert(A,K) = {A,K}K−1
S

.

sessionK : N× N× N× {0, 1} → N

clientK(x, y, z) = sessionK(x, y, z, 0)

serverK(x, y, z) = sessionK(x, y, z, 1)

Functions sessionK and PRF are assumed to be collision-free.



For issuing certificates we assume an authentication server S with public

and private keys KS and K−1
S respectively.

Certificates are of the form cert(A,K) = {A,K}K−1
S

.

sessionK : N× N× N× {0, 1} → N

clientK(x, y, z) = sessionK(x, y, z, 0)

serverK(x, y, z) = sessionK(x, y, z, 1)

Functions sessionK and PRF are assumed to be collision-free.



Session resumption

A session is resumed by using the corresponding session identifier Sid and

master secret M .

Fresh nonces Na and Nb need to be exchanged.

The messages exchanged for session resumption are client hello, server

hello, client finished and server finished.

Session resumption is supposed to be secure even if old keys from the same

session are compromised.



Finished = Hash(M, messages)

{Finished}serverK(Na,Nb,M)

A, Na, Sid, Pa
client hello

Nb, Sid, Pb
server hello

cert(B, Kb)

server certificate

cert(A, Ka)
client certificate

{PMS}Kb
client key exchange

{Hash(Nb, B, PMS)}
Ka−1

certificate verify

M = PRF (PMS, Na, Nb)

{Finished}clientK(Na,Nb,M)

client finished

server finished

client server

The client certificate and cer-

tificate verify messages are

optional.

Hence A can remain unau-

thenticated, leading to an at-

tack where the intruder pre-

tends to be another client.



Ensuring correctness of a cryptographic protocol

• Finding some attacks (with a tool)

• Guaranteeing that there are no attacks (certification)

– Writing proofs checked by a tool like Isabelle: reliable,

but costs time and human effort.

– Use an automated tool to guarantee correctness: fast

but works only for specific classes of protocols.

Paulson’s proof of the TLS handshake protocol in Isabelle:

6 weeks of human time, a dozen pages long proof script,

proof checking by Isabelle in a few minutes.

Available at: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

dist/library/HOL/Auth/TLS.html



Ensuring correctness of a cryptographic protocol

• Finding some attacks (with a tool)

• Guaranteeing that there are no attacks (certification)

– Writing proofs checked by a tool like Isabelle: reliable,

but costs time and human effort.

– Use an automated tool to guarantee correctness: fast

but works only for specific classes of protocols.

Paulson’s proof of the TLS handshake protocol in Isabelle:

6 weeks of human time, a dozen pages long proof script,

proof checking by Isabelle in a few minutes.

Available at: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

dist/library/HOL/Auth/TLS.html



Automatically analyzing cryptographic protocols

• Consider a fixed number of sessions (to detect some attacks)

– Passive intruder: checking secrecy mounts to solving the

intruder deduction problem.

– Active intruder

• Infinitely many sessions (to certify protocols):

Need to consider restricted classes of protocols



Automatically analyzing cryptographic protocols

• Consider a fixed number of sessions (to detect some attacks)

– Passive intruder: checking secrecy mounts to solving the

intruder deduction problem.

– Active intruder

• Infinitely many sessions (to certify protocols):

Need to consider restricted classes of protocols



Ping-Pong Protocols

A simple class of protocols whose security can be efficiently checked.

Considered originally by Dolev and Yao (1983).

Improved algorithms by Dolev, Even and Karp.

Introduces some of the techniques required for more complex protocols.

Ping-Pong protocols consist of a sequence of message exchanges

between a pair of participants. A sequence of operators is applied

on a received message to compute the message sent.



X → Y : {M}KY
, X

Y → X: {M}KX

X sends a secret message M to Y who responds to confirm the reception

of the secret message.

Does the message M remain secret ?

An attack:

X → (Y )Z : {M}KY
, X

Z → Y : {M}KY
, Z

Y → Z : {M}KZ

Attacker Z computes M from the last message.



X → Y : {M}KY
, X

Y → X: {M}KX

X sends a secret message M to Y who responds to confirm the reception

of the secret message.

Does the message M remain secret ?

An attack:

X → (Y )Z : {M}KY
, X

Z → Y : {M}KY
, Z

Y → Z : {M}KZ

Attacker Z computes M from the last message.



X → Y : {M}KY
, X

Y → X: {M}KX

To correct the flaw the sender’s identity is now sent encrypted.

X → Y : {M,X}KY

Y → X: {M}KX

This protocol is secure. Proof ?

To make it more secure:

X → Y : {{M}KY
, X}KY

Y → X: {M}KX

This protocol is insecure!!



X → Y : {M}KY
, X

Y → X: {M}KX

To correct the flaw the sender’s identity is now sent encrypted.

X → Y : {M,X}KY

Y → X: {M}KX

This protocol is secure.

Proof ?

To make it more secure:

X → Y : {{M}KY
, X}KY

Y → X: {M}KX

This protocol is insecure!!



X → Y : {M}KY
, X

Y → X: {M}KX

To correct the flaw the sender’s identity is now sent encrypted.

X → Y : {M,X}KY

Y → X: {M}KX

This protocol is secure. Proof ?

To make it more secure:

X → Y : {{M}KY
, X}KY

Y → X: {M}KX

This protocol is insecure!!



X → Y : {M}KY
, X

Y → X: {M}KX

To correct the flaw the sender’s identity is now sent encrypted.

X → Y : {M,X}KY

Y → X: {M}KX

This protocol is secure. Proof ?

To make it more secure:

X → Y : {{M}KY
, X}KY

Y → X: {M}KX

This protocol is insecure!!



X → Y : {M}KY
, X

Y → X: {M}KX

To correct the flaw the sender’s identity is now sent encrypted.

X → Y : {M,X}KY

Y → X: {M}KX

This protocol is secure. Proof ?

To make it more secure:

X → Y : {{M}KY
, X}KY

Y → X: {M}KX

This protocol is insecure!!



X → Y : {{M}KY
, X}KY

Y → X: {M}KX

Attack:

X → (Y )Z : {{M}KY
, X}KY

Z → Y : {{{M}KY
, X}KY

, Z}KY

Y → Z : {{M}KY
, X}KZ

Z → Y : {{M}KY
, Z}KY

Y → Z : {M}KZ

Another attack: Z reads {M}KX
, then

Z → X : {{M}KX
, Z}KX

X → Z : {M}KZ



X → Y : {{M}KY
, X}KY

Y → X: {M}KX

Attack:

X → (Y )Z : {{M}KY
, X}KY

Z → Y : {{{M}KY
, X}KY

, Z}KY

Y → Z : {{M}KY
, X}KZ

Z → Y : {{M}KY
, Z}KY

Y → Z : {M}KZ

Another attack: Z reads {M}KX
, then

Z → X : {{M}KX
, Z}KX

X → Z : {M}KZ



Each user X has a public key KX and private key K−1
X . We have operators

EX(m) = {m}KX

iX(m) = m,X

as well as their inverse operations. The protocol P (X,Y )

X → Y : {M}KY
, X

Y → X: {M}KX

is denoted by the rules:

send(iX(EY (M)))

receive(iX(EY (x))), send(EX(x))

Our protocols are sets of receive-send pairs. We follow the usual Dolev-Yao

model: communication takes place through the intruder.



X → Y : {M,X}KY

Y → X: {M}KX

is modeled as

send(EY (iX(M))))

receive(EY (iX(x))), send(EX(x))

X → Y : {{M}KY
, X}KY

Y → X: {M}KX

is modeled as

send(EY (iX(EY (M)))))

receive(EY (iX(EY (x)))), send(EX(x))

In general protocols may have more than two steps.



We are interested in modeling the knowledge of the intruder.

Consider two honest agents A,B and an attacker C (justification ??)

A rule like send(EY (iX(EY (M))))) is expanded to six rules

send(EB(iA(EB(MAB))))) send(EC(iA(EC(MAC))))) . . .

. . . or just one rule send(EB(iA(EB(M))))) suffices!

Rule receive(EY (iX(EY (x)))), send(EX(x)) is expanded to six rules

receive(EB(iA(EB(x)))), send(EA(x))

. . .

These are essentially rules for modeling intruder’s ability to learn new

messages from existing messages.

intruder knows EB(iA(EB(M))))

if intruder knows EB(iA(EB(x))) then intruder knows EA(x)



These rules can now be thought of as rules for manipulating a stack.

stack EB(iA(EB(M)))) is reachable

if stack EB(iA(EB(x))) is reachable then stack EA(x) is reachable.

Consider pop and push as basic operations.

→q0(M) (push)

q0(x)→q1(EB(x)) (push)

q1(x)→q2(iA(x)) (push)

q2(x)→q(EB(x)) (push)

q(EB(x))→q3(x) (pop)

q3(iA(x))→q4(x) (pop)

q4(EB(x))→q5(x) (pop)

q5(x)→q(EA(x)) (push)

Besides, we have default rules: q(x)→ q(EC(x)), q(EC(x))→ q(x),

q(x)→ q(iA(x)), q(iA(x))→ q(x),. . .

The insecurity question: can q(M) be obtained from these rules?



To answer this, we add new derived rules. For any p, p′, p′′:

given push rule p(x)→ p′(σ(x)) and pop rule p′(σ(x))→ p′′(x)

we add the ε-rule p(x)→ p′′(x) (σ ∈ {EA, iA, . . .}).

given push rule p(x)→ p′(σ(x)) and ε-rule p′(x)→ p′′(x)

we add the push rule p(x)→ p′′(σ(x))

given push rule p′(M) and ε-rule p′(x)→ p′′(x)

we add the push rule p′′(M)

In this way, if the rule q(M) is eventually derived

then the protocol is insecure, otherwise the protocol is secure.



Correctness argument

Claim: if any p(t) can be obtained, then it can be obtained using only the

(old and new) push rules.

Induction on the number of rules applied to obtain p(t).

If p(M) is obtained by the same rule then there is nothing to show.

If p(σ(t′)) is obtained by applying push rule p′(x)→ p(σ(x)) on p′(t′), by

induction hypothesis, p′(t′) can be obtained using only push rules,

hence so can be p(σ(t′)).



Let p(t) be obtained by applying ε-rule p′(x)→ p(x) on p′(t).

By i.h. p′(t) can be obtained using only push rules.

If t = M and p′(M) is obtained using the same rule, then the derived rule

p(M) does the job.

If t = σ(t′) and p′(σ(t′)) is obtained by applying push rule p′′(x)→ p′(σ(x))

on p′′(t′), then the derived rule p′′(x)→ p(σ(x)) does the job.



Let p(t) be obtained from p′(σ(t′)) by applying pop rule

p′(σ(x))→ p(x) on p′(σ(x)).

By i.h. p′(σ(t)) can be obtained using only push rules.

p′(σ(t)) must be obtained by applying a push rule p′′(x)→ p′(σ(x)) on

p′′(t).

We have a derived rule p′′(x)→ p(x).

If t = M and p′′(M) is obtained from the same rule then the rule p(M)

does the job

If t = σ′(t′) and p′′(σ′(t′)) is obtained by applying push rule

p′′′(x)→ p′′(σ′(x)) on p′′′(t′′) then the derived rule p′′′(x)→ p(σ′(x)) does

the job.



We have shown:

Claim: if any p(t) can be obtained, then it can be obtained using only the

(old and new) push rules.

Now suppose the protocol is insecure.

Then q(M) must be obtained by the rules.

By above claim, it must be obtained by only the push rules.

The only possibility is that it is obtained by the rule q(M).

Hence the rule q(M) must be derived.



Time complexity

Number of states s is linear in the size of the input protocol.

For a fixed set of operators, the number of possible rules is O(s2).

Our algorithm runs in a loop, adding as many new derived rules as possible,

till no further rules can be added.

A loose analysis shows us that this is a polynomial time algorithm.

Finer analysis actually gives a cubic time complexity.



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!



X → Y : {M}KY
, X

Y → X: {M}KX

Some useful rules:

→q0(M)

q0(x)→q1(EB(x))

q1(x)→q(iA(x))

q(iC(x))→q2(x)

q2(EB(x))→q3(x)

q3(x)→q(EC(x))

q(iA(x))→q(x)

q(x)→q(iC(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → q(x)

q0(x) → q(EB(x))

q(x) → q2(x)

q0(x) → q2(EB(x))

q0(x) → q3(x)

→ q3(M)

q3(x) → q(x)

→ q(M)

Insecure!


