
X → Y : {M,X}KY

Y → X: {M}KX

The rule set, with X,Y ∈ {A,B,C}, X 6= Y :

→q0(M)

q0(x)→q1(iA(x))

q1(x)→q(EB(x))

q(EY (x))→qXY
2 (x)

qXY
2 (iX(x))→qXY

3 (x)

qXY
3 (x)→q(EX(x))

q(x)→q(iX(x))

q(iX(x))→q(x)

q(x)→q(EX(x))

q(EC(x))→q(x)

Derived rules:

q1(x) → qXB
2 (x)

q0(x) → qXB
2 (iA(x))

q0(x) → qAB
3 (x)

→ qAB
3 (M)

qXY
3 (x) → qX′X

2 (x)

→ qX′A
2 (M)

qXC
3 (x) → q(x)

q(x) → q(x)

No more rules!

Secure!
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The rules we have been dealing with define what we call a pushdown

system: a set of rules for popping and pushing symbols on a stack while

changing states.

This also provides us with a common method for solving the intruder

deduction problem and the security problem for ping pong protocols.

⇒ the stack needs to deal with trees instead of strings.

This is because we can have messages of the form 〈m1,m2〉 where both

m1 and m2 are now arbitrary messages, not just constants.

We need push rules of the form q1(x), q2(y)→ q(〈x, y〉).

And pop rules of the form q1(〈x, y〉)→ q2(x).
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Rephrasing the intruder deduction problem in this framework

q(x), q(y)→q(〈x, y〉) (push)

q(〈x, y〉)→q(x) (pop)

q(〈x, y〉)→q(y) (pop)

q(x), q(y)→q({x}y) (push)

q({x}y), q(y)→q(x) (pop)

q({x}k), q(k
−1)→q(x) (pop)

q(x1), . . . , q(xn)→q(h(x1, . . . , xn)) (push)

q(h(x1, . . . , xn))→q(h(xi)) (pop)

For initial intruder knowledge of terms like {a}k we have rules

q1(a) q2(k) q1(x), q2(y)→ q({x}y).



Upto details we have the following kinds of rules

q1(x1), q2(x2)→q(f(x1, x2))

q(f(x1, x2)), q2(x2)→p(x1)

q1(x)→q2(x)

. . .→. . .

These are also crucial for handling more complex classes of protocols.

These can be automatically handled by several existing tools today.

E.g. the HX tool (Thomas Gawlitza):

http://www2.in.tum.de/~gawlitza/hx
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Example: q1(A) q2(M) q3(K) q1(x), q2(y)→ q4(〈x, y〉)

q4(x), q3(y)→ q5({x}y) q6(K) q5({x}y), q6(y)→ q7(x)

q2(M)

q4(〈A, M〉)

q7(〈A, M〉)

q1(A)

q6(K)

q3(K)

q5({A, M}K)

The rule applications form a branching pattern.



An example beyond ping-pong protocols.

X → Y : {c,M}KY

Y → X : {〈d,M〉, e}KX

The second step can be described using rules:

→ qX(KX)

→ qY (KY )

→ q1(c)

→ q2(d)

→ q3(e)

q({x}y), qY (y)→ q4(x)

q4(〈x, y〉), q1(x)→ q5(y)

q2(x), q5(y)→ q6(〈x, y〉)

q6(x), q3(y)→ q7(〈x, y〉)

q7(x), qX(y)→ q({x}y)

Finally such rules are also obtained by approximations of

complex protocols.



For a state q let L(q) be the set of all messages m such that q(m) is true

according to the given set of rules. The previous rule

q({x}k), q(k
−1)→ q(x)

can be written as

→ q′(k)

k−1∈L(q), q({x}y), q
′(y)→ q(x)

Hence we need rules with side-conditions. The above is a membership

condition. Other conditions are:

nonemptiness condition: L(q) 6= ∅

intersection-nonemptiness condition: L(q1) ∩ L(q2) 6= ∅

Given only push rules, these conditions are easy to check!



Checking membership m ∈ L(q) with push rules

We iteratively compute a set S of facts of the above form.

If q′(c) is a rule and c occurs in m then the fact c ∈ L(q′) is added to S.

If q1(x), q2(y)→ q3(〈x, y〉) is a rule,

if facts m1 ∈ L(q1) and m2 ∈ L(q2) are in S, and

if 〈m1,m2〉 occurs in m, then the fact 〈m1,m2〉 ∈ L(q3) is added to S.

If q1(x), q2(y)→ q3({x}y) is a rule,

if facts m1 ∈ L(q1) and m2 ∈ L(q2) are in S, and

if {m1}m2 occurs in m, then the fact {m1}m2 ∈ L(q3) is added to S.

Similarly for hash functions.

If the fact m ∈ L(q) is added in this way then the membership test

succeeds, else it fails. This requires polynomial time
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If q′(c) and q′′(c) are rules then the fact L(q′) ∩ L(q′′) 6= ∅ is added to S.

If p(x), q(y)→ r(〈x, y〉) and p′(x), q′(y)→ r′(〈x, y〉) are rules,

if facts L(p) ∩ L(p′) 6= ∅ and L(q) ∩ L(q′) 6= ∅ are in S,

then the fact L(r) ∩ L(r′) 6= ∅ is added to S.

Similarly for encryption and hash functions.

If the fact L(q1) ∩ L(q2) 6= ∅ is added in this way then the

intersection-nonemptiness test succeeds, else it fails.

This requires polynomial time



Checking intersection-nonemptiness L(q1) ∩ L(q2) 6= ∅ with push rules

We iteratively compute a set S of facts of the above form.

If q′(c) and q′′(c) are rules then the fact L(q′) ∩ L(q′′) 6= ∅ is added to S.

If p(x), q(y)→ r(〈x, y〉) and p′(x), q′(y)→ r′(〈x, y〉) are rules,

if facts L(p) ∩ L(p′) 6= ∅ and L(q) ∩ L(q′) 6= ∅ are in S,

then the fact L(r) ∩ L(r′) 6= ∅ is added to S.

Similarly for encryption and hash functions.

If the fact L(q1) ∩ L(q2) 6= ∅ is added in this way then the

intersection-nonemptiness test succeeds, else it fails.

This requires polynomial time



Checking intersection-nonemptiness L(q1) ∩ L(q2) 6= ∅ with push rules

We iteratively compute a set S of facts of the above form.

If q′(c) and q′′(c) are rules then the fact L(q′) ∩ L(q′′) 6= ∅ is added to S.

If p(x), q(y)→ r(〈x, y〉) and p′(x), q′(y)→ r′(〈x, y〉) are rules,

if facts L(p) ∩ L(p′) 6= ∅ and L(q) ∩ L(q′) 6= ∅ are in S,

then the fact L(r) ∩ L(r′) 6= ∅ is added to S.

Similarly for encryption and hash functions.

If the fact L(q1) ∩ L(q2) 6= ∅ is added in this way then the

intersection-nonemptiness test succeeds, else it fails.

This requires polynomial time



We now generalize the operations which add new rules.

Given rules q(c) and q(x)→ p(x) we add the rule q(c).

Given rules q1(x), q2(y)→ q(〈x, y〉) and q(x)→ p(x) we add the rule

q1(x), q2(y)→ p(〈x, y〉).

Similarly for encryption and hash functions.



If q1(x), q2(y)→ q(〈x, y〉) and q(〈x, y〉)→ p(x) are rules then

we add the rule L(q2) 6= ∅, q1(x)→ p(x)

If q1(x), q2(y)→ q({x}y) and q({x}y), q3(y)→ p(x) are rules then

we add the rule L(q2) ∩ L(q3) 6= ∅, q1(x)→ p(x)

. . .

If C, r is a rule and the condition C succeeds using only the current push

rules, then we add the rule r.

We do this repeatedly and finally remove all rules other than push rules.

Then questions like secrecy can be considered as membership tests.

Overall time complexity is polynomial.
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we add the rule L(q2) ∩ L(q3) 6= ∅, q1(x)→ p(x)

. . .

If C, r is a rule and the condition C succeeds using only the current push

rules, then we add the rule r.

We do this repeatedly and finally remove all rules other than push rules.

Then questions like secrecy can be considered as membership tests.

Overall time complexity is polynomial.



Our old example: q1(A) q2(M) q3(K) q1(x), q2(y)→ q4(〈x, y〉)

q4(x), q3(y)→ q5({x}y) q6(K) q5({x}y), q6(y)→ q7(x)

q2(M)

q4(〈A, M〉)

q7(〈A, M〉)

q1(A)

q6(K)

q3(K)

q5({A, M}K)

We add rules: L(q3) ∩ L(q6) 6= ∅, q4(x)→ q7(x) q4(x)→ q7(x)

q1(x), q2(y)→ q7(〈x, y〉)



To summarize, we have obtained a general polynomial time algorithm for

• the intruder deduction problem

• the secrecy problem for ping-pong protocols

• the (approximate) secrecy problem for more complex classes of

protocols.



Justification for using only three agents

Each session in our ping-pong protocols involves a pair of agents (X,Y ).

We may have (interleaved) sessions between several (non-disjoint) pairs

(X1, Y1), (X2, Y2), (X3, Y3) . . ..

If such an execution leads to leak of secret, then we show that their is a

leak of secret with just two honest agents and one dishonest agent.

Idea: projection!

Such results are crucial for developing automated techniques for analyzing

protocols.



In general we may assume, for every pair (X,Y ) of distinct agents, an

infinite number of secret values M i
X,Y , to be used in different sessions

between X and Y .

A ping-pong protocol can be represented by a set of rules of the form

r0[X,Y ] ≡ q(α0[X,Y ](M i
X,Y )

r1[X,Y ] ≡ q(β1[X,Y ](x)→ q(α1[X,Y ](x))

. . .

rk[X,Y ] ≡ q(βk[X,Y ](x))→ q(αk[X,Y ](x))

For the protocol

X → Y : {M}KY
, X

Y → X: {M}KX

we have α0[X,Y ] = iXEY β1[X,Y ] = iXEY α1[X,Y ] = EX



The attacker learns new messages using execution sequences of the form

w0(M
i
X,Y ), w1(M

i
X,Y ), w2(M

i
X,Y ), . . .

Different sequences starting with different initial secrets continue

independently of each other.

By symmetry, if M i
X,Y is leaked for some i then it is leaked for all i.

Hence for every pair of agents (X,Y ) we consider just one secret MX,Y .

Also by symmetry, if MX,Y is leaked for some pair (X,Y ) of honest

agents then it is leaked for all pairs of honest agents.

Hence we consider just one secret M = MA,B between honest agents A

and B.



Now we just have the rules r0(A,B) and r1[X,Y ], . . . ,rk[X,Y ]

for distinct X and Y .

Also as usual, we have rules for dishonest agents’ abilities to do apply

symbols iX and EX and remove symbols iX and EZ for all agents X and

all dishonest agents Z.

The replacement of an agent U by an agent U ′ in an execution sequence

is defined as follows (we never replace a dishonest agent by an honest

agent).

Every rule ri[U, V ] is replaced by rule ri[U
′, V ].

Every rule ri[V , U ] is replaced by rule ri[V , U ′].

Addition and removal of symbols iU , EU are replaced by addition and

removal of symbols iU ′, EU ′ .



Let w be the original message obtained from the execution sequence.

After the replacement we obtain w[U 7→ U ′].

(The 7→ symbol denoted replacement).

We also need to check there are no sessions between identical agents.

We choose one dishonest agent C. All agents other than A and B are

replaced by agent C.

This may create sessions between C and C. But these can be thought of

as actions of dishonest agents like encryption, decryption, etc.

Hence if M was obtained in the original execution then it is also obtained

by using only A, B and C.



Towards a precise description of general
protocols
Goal: develop techniques for analyzing more complex protocols.

E.g. we would like to prove a bound on the number of agents required for

analyzing general protocols.

1. A −→ B : na

2. B −→ A : na, nb

3. A −→ B : nb

We need to model

• states of agents: above, A and B each can be in three states.

• intruder’s knowledge.



Towards a precise description of general
protocols
Goal: develop techniques for analyzing more complex protocols.

E.g. we would like to prove a bound on the number of agents required for

analyzing general protocols.

1. A −→ B : na

2. B −→ A : na, nb

3. A −→ B : nb

We need to model

• states of agents: above, A and B each can be in three states.

• intruder’s knowledge.



Each protocol may be played between various agents simultaneously with

different values of nonces.

A protocol state is a collection of just agent states, together with the

intruder’s knowledge.

⇒ use multisets, or sets with multiplicities, or unordered lists.

We use rules on multisets to describe execution of protocol steps.

⇒ multiset rewriting (Durgin et. al)

To describe creation of fresh nonces, we use rules like

A ∃x ·B(x)

Given a multiset M,A this rule allows us to obtain the multiset M,B(c)

where c is a completely fresh constant.



Encryption free Needham-Schroeder protocol

A −→ B : na

B −→ A : na, nb

A −→ B : nb

Predicates used:

A0() Alice is in state 0 (initial role state)

A1(nonce) Alice is in state 1, with a nonce

A2(nonce, nonce) Alice is in state 2, with two nonces



B0() Bob is in state 0 (initial role state)

B1(nonce, nonce) Bob is in state 1, with a nonce

B2(nonce, nonce) Bob is in state 2, with two nonces

I(message) Intruder knows message



Rules:

A0()  ∃x.A1(x), I(x)

B0(), I(x)  ∃y.B1(x, y), I(〈x, y〉), I(x)

A1(x), I(〈x, y〉)  A2(x, y), I(y), I(〈x, y〉)

B1(x, y), I(y)  B2(x, y), I(y)

. . .

Example execution:

B0(), A0()

 A1(na), I(na), B0()

 B1(na, nb), I(〈na, nb〉), I(na), A1(na)

 A2(na, nb), I(nb), I(〈na, nb〉), I(na), B1(na, nb)

 B2(na, nb), I(nb), I(〈na, nb〉), I(na), A2(na, nb)
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