Our old protocol

$$
\begin{array}{ll}
X \rightarrow Y: & \{M\}_{K_{Y}}, X \\
Y \rightarrow X: & \{M\}_{K_{X}}
\end{array}
$$

Our old protocol

$$
\begin{array}{ll}
X \rightarrow Y: & \{M\}_{K_{Y}}, X \\
Y \rightarrow X: & \{M\}_{K_{X}}
\end{array}
$$

... and the familiar attack
h_{1} sends $\{M\}_{K_{h_{2}}}, h_{1}$
h_{2} gets $\{M\}_{K_{h_{2}}}, d$
h_{2} sends $\{M\}_{K_{d}}$

Our old protocol...

$$
\begin{array}{ll}
X \rightarrow Y: & \{M\}_{K_{Y}}, X \\
Y \rightarrow X: & \{M\}_{K_{X}}
\end{array}
$$

an attack with 4 agents ...
h_{1} sends $\{M\}_{K_{h_{2}}}, h_{1}$
h_{2} gets $\quad\{M\}_{K_{h_{2}}}, h_{3}$
h_{2} sends $\{M\}_{K_{h_{3}}}$
h_{3} gets $\quad\{M\}_{K_{h_{3}}}, d$
h_{3} sends $\{M\}_{K_{d}}$
h_{1} sends $\{M\}_{K_{h_{2}}}, h_{1}$
h_{2} gets $\quad\{M\}_{K_{h_{2}}}, d$
h_{2} sends $\{M\}_{K_{d}}$
... and the familiar attack

Our old protocol...

$$
\begin{array}{ll}
X \rightarrow Y: & \{M\}_{K_{Y}}, X \\
Y \rightarrow X: & \{M\}_{K_{X}}
\end{array}
$$

... and the familiar attack

$$
\begin{array}{ll}
h_{1} \text { sends } & \{M\}_{K_{h_{2}}}, h_{1} \\
h_{2} \text { gets } & \{M\}_{K_{h_{2}}}, d \\
h_{2} \text { sends } & \{M\}_{K_{d}}
\end{array}
$$

an attack with 4 agents ...
h_{1} sends $\{M\}_{K_{h_{2}}}, h_{1}$
h_{2} gets $\quad\{M\}_{K_{h_{2}}}, h_{3}$
h_{2} sends $\quad\{M\}_{K_{h_{3}}}$
h_{3} gets $\quad\{M\}_{K_{h_{3}}}, d$
h_{3} sends $\{M\}_{K_{d}}$
...after projection
h_{1} sends $\{M\}_{K_{h_{2}}}, h_{1}$
h_{2} gets $\{M\}_{K_{h_{2}}}, d$
h_{2} sends $\{M\}_{K_{d}}$
d gets $\quad\{M\}_{K_{d}}, d$
d sends $\quad\{M\}_{K_{d}}$

The protocol is described as follows.
With three honest and one dishonest agent:
$\rightsquigarrow H a\left(h_{1}\right)$
$\rightsquigarrow H a\left(h_{2}\right)$
$\rightsquigarrow H a\left(h_{3}\right)$
$\rightsquigarrow D a(d)$

The protocol is described as follows.
With three honest and one dishonest agent:
$\rightsquigarrow H a\left(h_{1}\right) \quad \rightsquigarrow H a\left(h_{2}\right) \quad \rightsquigarrow H a\left(h_{3}\right) \quad \rightsquigarrow D a(d)$
$H a(x) \rightsquigarrow \operatorname{Agent}(x), H a(x)$

$$
D a(x) \rightsquigarrow \operatorname{Agent}(x), D a(x)
$$

The protocol is described as follows.
With three honest and one dishonest agent:
$\rightsquigarrow H a\left(h_{1}\right) \quad \rightsquigarrow H a\left(h_{2}\right) \quad \rightsquigarrow H a\left(h_{3}\right) \quad \rightsquigarrow D a(d)$
$H a(x) \rightsquigarrow \operatorname{Agent}(x), H a(x)$
$D a(x) \rightsquigarrow \operatorname{Agent}(x), D a(x)$
$\operatorname{Agent}(x) \rightsquigarrow I(x), I(\operatorname{pub}(x)), \operatorname{Agent}(x)$
$D a(x) \rightsquigarrow I(\operatorname{prv}(x)), D a(x)$

The protocol is described as follows.
With three honest and one dishonest agent:

$$
\begin{aligned}
& \rightsquigarrow H a\left(h_{1}\right) \rightsquigarrow H a\left(h_{2}\right) \quad \rightsquigarrow H a\left(h_{3}\right) \\
& H a(x) \rightsquigarrow \operatorname{Agent}(x), H a(x) \quad D a(x) \rightsquigarrow \operatorname{Agent}(x), D a(x) \\
& \operatorname{Agent}(x) \rightsquigarrow I(x), I(\operatorname{pub}(x)), \operatorname{Agent}(x) \quad D a(x) \rightsquigarrow I(\operatorname{prv}(x)), D a(x) \\
& \rightsquigarrow \operatorname{Distinct}\left(h_{1}, h_{2}\right) \quad \rightsquigarrow \operatorname{Distinct}\left(h_{1}, d\right) \\
& \rightsquigarrow \operatorname{Distinct}\left(h_{2}, h_{1}\right) \quad \rightsquigarrow \operatorname{Distinct}\left(d, h_{1}\right) \quad \rightsquigarrow \operatorname{Distinct}(d, d)
\end{aligned}
$$

The usual rules for intruder actions

$$
\begin{aligned}
I(x), I(y) & \rightsquigarrow I(\langle x, y\rangle), I(x), I(y) \\
I(\langle x, y\rangle) & \rightsquigarrow I(x), I(y), I(\langle x, y\rangle) \\
I(x), I(y) & \rightsquigarrow I\left(\{x\}_{y}\right), I(x), I(y) \\
I\left(\{x\}_{p u b(y)}\right), I(p r v(y)) & \rightsquigarrow I(x), I\left(\{x\}_{p u b(y)}\right), I(p r v(y)) \\
I\left(\{x\}_{p r v(y)}\right), I(p u b(y)) & \rightsquigarrow I(x), I\left(\{x\}_{p r v(y)}\right), I(p u b(y)) \\
& \rightsquigarrow \exists n \cdot I(n)
\end{aligned}
$$

And the protocol specific rules

$$
\begin{aligned}
& \text { Agent }(x), \operatorname{Agent}(y), \\
& \operatorname{Distinct}(x, y)
\end{aligned} \rightsquigarrow \begin{aligned}
& A_{0}(x, y), B_{0}(x, y), \operatorname{Agent}(x), \operatorname{Agent}(y), \\
& \operatorname{Distinct}(x, y)
\end{aligned}
$$

And the protocol specific rules

$$
\begin{aligned}
& \operatorname{Agent}(x), \operatorname{Agent}(y), \\
& \operatorname{Distinct}(x, y)
\end{aligned} \rightsquigarrow \begin{aligned}
& A_{0}(x, y), B_{0}(x, y), \operatorname{Agent}(x), \operatorname{Agent}(y), \\
& \operatorname{Distinct}(x, y)
\end{aligned}
$$

$$
A_{0}(x, y) \rightsquigarrow \exists z \cdot A_{1}(x, y, z), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right)
$$

And the protocol specific rules

$$
\begin{aligned}
\text { Agent }(x) \text {, Agent }(y), & \\
\text { Distinct }(x, y) & A_{0}(x, y), B_{0}(x, y), \text { Agent }(x), \text { Agent }(y), \\
& \operatorname{Distinct}(x, y) \\
A_{0}(x, y) & \rightsquigarrow \exists z \cdot A_{1}(x, y, z), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) \\
B_{0}(x, y), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) & \rightsquigarrow B_{1}(x, y, z), I\left(\{z\}_{p u b(x)}\right), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right)
\end{aligned}
$$

And the protocol specific rules

$$
\begin{aligned}
& \text { Agent }(x), \text { Agent }(y), \\
& A_{0}(x, y), B_{0}(x, y) \text {, Agent }(x), \text { Agent }(y), \\
& \operatorname{Distinctinct}(x, y) \\
& A_{0}(x, y) \rightsquigarrow \exists z \cdot A_{1}(x, y, z), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) \\
& B_{0}(x, y), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) \rightsquigarrow B_{1}(x, y, z), I\left(\{z\}_{p u b(x)}\right), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) \\
& A_{1}(x, y, z), I\left(\{z\}_{p u b(x)}\right) \rightsquigarrow A_{2}(x, y, z), I\left(\{z\}_{p u b(x)}\right)
\end{aligned}
$$

And the protocol specific rules

$$
\begin{aligned}
\text { Agent }(x), \text { Agent }(y), & \rightsquigarrow \\
\operatorname{Distinct}(x, y) & \\
& A_{0}(x, y), B_{0}(x, y), \text { Agentinct }(x, y), \text { Agent }(y), \\
A_{0}(x, y) & \rightsquigarrow \exists z \cdot A_{1}(x, y, z), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) \\
B_{0}(x, y), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) & \rightsquigarrow B_{1}(x, y, z), I\left(\{z\}_{p u b(x)}\right), I\left(\left\langle\{z\}_{p u b(y)}, x\right\rangle\right) \\
A_{1}(x, y, z), I\left(\{z\}_{p u b(x)}\right) & \rightsquigarrow A_{2}(x, y, z), I\left(\{z\}_{p u b(x)}\right)
\end{aligned}
$$

Security question: is a protocol state reachable containing the pattern

$$
H a(x), H a(y), A_{2}(x, y, z), I(z)
$$

We can apply these rules to get a protocol state of the form

$$
\begin{aligned}
& H a\left(h_{1}\right), H a\left(h_{2}\right), H a\left(h_{3}\right), \operatorname{Da}(d), \text { Agent }\left(h_{1}\right), \text { Agent }\left(h_{2}\right), \text { Agent }\left(h_{3}\right), \\
& \quad \text { Agent }(d), \operatorname{Distinct}\left(h_{1}, h_{2}\right), \operatorname{Distinct}\left(h_{3}, h_{2}\right), \operatorname{Distinct}\left(d, h_{3}\right), \\
& \quad A_{2}\left(h_{1}, h_{2}, m\right), B_{0}\left(h_{1}, h_{2}\right), \quad A_{0}\left(h_{3}, h_{2}\right), B_{1}\left(h_{3}, h_{2}, m\right), \\
& \quad A_{0}\left(d, h_{3}\right), B_{1}\left(d, h_{3}, m\right), \quad I\left(\{m\}_{p u b\left(h_{2}\right)}, h_{1}\right), I\left(\{m\}_{p u b\left(h_{2}\right)}, h_{3}\right), \\
& I\left(\{m\}_{p u b\left(h_{3}\right)}\right), I\left(\{m\}_{p u b\left(h_{3}\right)}, d\right), I\left(\{m\}_{p u b(d)}\right), I(m), I\left(\{m\}_{p u b\left(h_{1}\right)}\right) \\
& I(\ldots) \ldots I(\ldots)
\end{aligned}
$$

We can apply these rules to get a protocol state of the form
$H a\left(h_{1}\right), H a\left(h_{2}\right), H a\left(h_{3}\right), D a(d), \operatorname{Agent}\left(h_{1}\right), \operatorname{Agent}\left(h_{2}\right), \operatorname{Agent}\left(h_{3}\right)$, $\operatorname{Agent}(d), \operatorname{Distinct}\left(h_{1}, h_{2}\right), \operatorname{Distinct}\left(h_{3}, h_{2}\right), \operatorname{Distinct}\left(d, h_{3}\right)$, $A_{2}\left(h_{1}, h_{2}, m\right), B_{0}\left(h_{1}, h_{2}\right), \quad A_{0}\left(h_{3}, h_{2}\right), B_{1}\left(h_{3}, h_{2}, m\right)$, $A_{0}\left(d, h_{3}\right), B_{1}\left(d, h_{3}, m\right), \quad I\left(\{m\}_{p u b\left(h_{2}\right)}, h_{1}\right), I\left(\{m\}_{p u b\left(h_{2}\right)}, h_{3}\right)$, $I\left(\{m\}_{p u b\left(h_{3}\right)}\right), I\left(\{m\}_{p u b\left(h_{3}\right)}, d\right), I\left(\{m\}_{p u b(d)}\right), I(m), I\left(\{m\}_{p u b\left(h_{1}\right)}\right)$ $I(\ldots) \ldots I(\ldots)$
We get the following without using the rules involving h_{3} (apply proj) $H a\left(h_{1}\right), H a\left(h_{2}\right), D a(d), D a(d), \operatorname{Agent}\left(h_{1}\right), \operatorname{Agent}\left(h_{2}\right), \operatorname{Agent}(d)$, Agent (d), Distinct $\left(h_{1}, h_{2}\right), \operatorname{Distinct}\left(d, h_{2}\right), \operatorname{Distinct}(d, d)$, $A_{2}\left(h_{1}, h_{2}, m\right), B_{0}\left(h_{1}, h_{2}\right), \quad A_{0}\left(d, h_{2}\right), B_{1}\left(d, h_{2}, m\right)$, $A_{0}(d, d), B_{1}(d, d, m), \quad I\left(\{m\}_{p u b\left(h_{2}\right)}, h_{1}\right), \quad I\left(\{m\}_{p u b\left(h_{2}\right)}, d\right)$, $I\left(\{m\}_{p u b(d)}\right), I\left(\{m\}_{p u b(d)}, d\right), I\left(\{m\}_{p u b(d)}\right), I(m), I\left(\{m\}_{p u b\left(h_{1}\right)}\right) \ldots$
$k+1$ is a tight bound
A toy variant of the Needham-Schroeder public key protocol:

$$
\begin{array}{ll}
A_{1} \rightarrow A_{2}: & \left\{A_{1}, A_{2}, \ldots, A_{k}, N_{A_{1}}\right\}_{K_{A_{2}}} \\
A_{2} \rightarrow A_{1}: & \left\{N_{A_{1}}, N_{A_{2}}\right\}_{K_{A_{1}}} \\
A_{1} \rightarrow A_{2}: & \left\{N_{A_{2}}\right\}_{K_{A_{2}}}
\end{array}
$$

Other steps involving A_{2}, A_{3}, \ldots could be added to make it more realistic.
This is modeled using similar rules as before. The agents A_{1}, \ldots, A_{k} are required to be distinct.

There is a standard attack involving $k+1$ agents.
k honest agents are required for the two nonces to be generated, and a dishonest agent for decryption of messages.

For $k=3$ we have the following rules.
$\operatorname{Agent}\left(x_{1}\right), \operatorname{Agent}\left(x_{2}\right), \operatorname{Agent}\left(x_{3}\right), \operatorname{Distinct}\left(x_{1}, x_{2}\right), \operatorname{Distinct}\left(x_{2}, x_{3}\right)$,
$\operatorname{Distinct}\left(x_{1}, x_{3}\right) \rightsquigarrow A_{1,0}\left(x_{1}, x_{2}, x_{3}\right), A_{2,0}\left(x_{1}, x_{2}, x_{3}\right)$, $\operatorname{Agent}\left(x_{1}\right)$, $\operatorname{Agent}\left(x_{2}\right)$, $\operatorname{Agent}\left(x_{3}\right), \operatorname{Distinct}\left(x_{1}, x_{2}\right), \operatorname{Distinct}\left(x_{2}, x_{3}\right), \operatorname{Distinct}\left(x_{1}, x_{3}\right)$
$A_{1,0}\left(x_{1}, x_{2}, x_{3}\right) \rightsquigarrow \exists z \cdot A_{1,1}\left(x_{1}, x_{2}, x_{3}, z\right), I\left(\left\{x_{1}, x_{2}, x_{3}, z\right\}_{p u b\left(x_{2}\right)}\right)$
$A_{2,0}\left(x_{1}, x_{2}, x_{3}\right), I\left(\left\{x_{1}, x_{2}, x_{3}, z\right\}_{\text {pub }\left(x_{2}\right)}\right) \rightsquigarrow$ $\exists w \cdot A_{2,1}\left(x_{1}, x_{2}, x_{3}, z, w\right), I\left(\{z, w\}_{p u b\left(x_{1}\right)}\right), I\left(\left\{x_{1}, x_{2}, x_{3}, z\right\}_{p u b\left(x_{2}\right)}\right)$
$A_{1,1}\left(x_{1}, x_{2}, x_{3}, z\right), I\left(\{z, w\}_{p u b\left(x_{1}\right)}\right) \rightsquigarrow$

$$
A_{1,2}\left(x_{1}, x_{2}, x_{3}, z, w\right), I\left(\{w\}_{p u b\left(x_{2}\right)}\right), I\left(\{z, w\}_{p u b\left(x_{1}\right)}\right)
$$

$A_{2,1}\left(x_{1}, x_{2}, x_{3}, z, w\right), I\left(\{w\}_{p u b\left(x_{2}\right)}\right) \rightsquigarrow A_{2,2}\left(x_{1}, x_{2}, x_{3}, z, w\right), I\left(\{w\}_{p u b\left(x_{2}\right)}\right)$

Security questions: can a protocol state be reached which contains

- Ha($\left.x_{1}\right), H a\left(x_{2}\right), H a\left(x_{3}\right), A_{1,2}\left(x_{1}, x_{2}, x_{3}, z, w\right), I(z)$.
- $H a\left(x_{1}\right), H a\left(x_{2}\right), H a\left(x_{3}\right), A_{1,2}\left(x_{1}, x_{2}, x_{3}, z, w\right), I(w)$.
- Ha($\left.x_{1}\right), H a\left(x_{2}\right), H a\left(x_{3}\right), A_{2,2}\left(x_{1}, x_{2}, x_{3}, z, w\right), I(z)$.
- $H a\left(x_{1}\right), H a\left(x_{2}\right), H a\left(x_{3}\right), A_{2,2}\left(x_{1}, x_{2}, x_{3}, z, w\right), I(w)$.

The first two represent the security questions about nonces $N_{A_{1}}$ and $N_{A_{2}}$ respectively from the point of view of A_{1}.

The last two represent the security questions about nonces $N_{A_{1}}$ and $N_{A_{2}}$ respectively from the point of view of A_{2}.

The standard man-in-the-middle attack.
We use honest agents A_{1}, A_{2}, A_{3} and dishonest agent $C(k=3)$

$$
\begin{array}{ll}
A_{1} \rightarrow C: & \left\{A_{1}, C, A_{3}, \ldots, A_{k}, N_{A_{1}}\right\}_{K_{C}} \\
C\left(A_{1}\right) \rightarrow A_{2}: & \left\{A_{1}, A_{2}, A_{3}, \ldots, A_{k}, N_{A_{1}}\right\}_{K_{A_{2}}} \\
A_{2} \rightarrow A_{1}: & \left\{N_{A_{1}}, N_{A_{2}}\right\}_{K_{A_{1}}} \\
A_{1} \rightarrow C: & \left\{N_{A_{2}}\right\}_{K_{C}} \\
C\left(A_{1}\right) \rightarrow A_{2}: & \left\{N_{A_{2}}\right\}_{K_{A_{2}}}
\end{array}
$$

The standard man-in-the-middle attack.
We use honest agents A_{1}, A_{2}, A_{3} and dishonest agent $C(k=3)$

$$
\begin{array}{ll}
A_{1} \rightarrow C: & \left\{A_{1}, C, A_{3}, \ldots, A_{k}, N_{A_{1}}\right\}_{K_{C}} \\
C\left(A_{1}\right) \rightarrow A_{2}: & \left\{A_{1}, A_{2}, A_{3}, \ldots, A_{k}, N_{A_{1}}\right\}_{K_{A_{2}}} \\
A_{2} \rightarrow A_{1}: & \left\{N_{A_{1}}, N_{A_{2}}\right\}_{K_{A_{1}}} \\
A_{1} \rightarrow C: & \left\{N_{A_{2}}\right\}_{K_{C}} \\
C\left(A_{1}\right) \rightarrow A_{2}: & \left\{N_{A_{2}}\right\}_{K_{A_{2}}}
\end{array}
$$

Using our rules, we get a protocol state of the form
$H a\left(a_{1}\right), H a\left(a_{2}\right), H a\left(a_{3}\right), D a(d)$,
$A_{1,2}\left(a_{1}, d, a_{3}, n, m\right), A_{2,2}\left(a_{1}, a_{2}, a_{3}, n, m\right), I(n), I(m), \ldots$
Hence both security questions from the point of view of A_{2} are violated.

Also, a protocol state containing $A_{2,2}\left(x_{1}, x_{2}, x_{3}, z, w\right)$ can be reached only if x_{1}, x_{2}, x_{3} are mutually distinct.

The conditions $H a\left(x_{1}\right), H a\left(x_{2}\right), H a\left(x_{3}\right)$ in the security property mean that these three agents should be honest.

Hence we require at least 3 honest agents for an attack.
In the absence of a dishonest agent, messages containing w known to the intruder always encrypted with public keys of honest agents.

Hence w can never be known to the intruder.

Hence an attack against the fourth security property requires at least 4 agents ($k+1$ agents in general).

Sometimes certain special names can be used in protocol: e.g. servers.
These are not counted in the number of agents required for an attack.

$$
\begin{aligned}
A \rightarrow B: & A, N_{a} \\
B \rightarrow S: & B,\left\{A, N_{a}, N_{b}\right\}_{K_{b s}} \\
S \rightarrow A: & \left\{B, K_{a b}, N_{a}, N_{b}\right\}_{K_{a s}},\left\{A, K_{a b}\right\}_{K_{b s}} \\
A \rightarrow B: & \left\{A, K_{a b}\right\}_{K_{b s}},\left\{N_{b}\right\}_{K_{a b}}
\end{aligned}
$$

This is the Yahalom protocol.
We use a special agent name server and the rule \rightsquigarrow Agent(server)

No rules of the form $H a($ server $)$ or $D a($ server $)$.
No rules to state whether server is distinct from other agents.

Protocol rules may involve these special names.

$$
\begin{array}{r}
\operatorname{Agent}(x), \operatorname{Agent}(y), \operatorname{Distinct}(x, y) \rightsquigarrow A_{0}(x, y, \text { server }), B_{0}(x, y, \text { server }), \\
\\
S_{0}(x, y, \text { server }), \operatorname{Agent}(x), \operatorname{Agent}(y), D i s t i n c t(x, y)
\end{array}
$$

Security properties are of the form
$H a(x), H a(y), A_{2}(x, y$, server, $z, u, v), I(v)$

In this example we have $k=2$ (server is not counted).
An attack requires $k+1=3$ agents besides the server.
Without the Distinct predicates, an attack requires 2 agents besides the server.

- Two agents suffice for detecting attacks when agents involved in a session need not all be distinct.
- Otherwise $k+1$ agents suffice where k is the number of honest agents involved in the security property.
- The protocols must be independent of agent names.
- Security properties must be independent of agent names.
- Security properties must be reachability properties.
- Still this does not give us a method to check these security properties.

An example of protocol analysis 'by hand'

Our familiar ping-pong protocol

$$
\begin{array}{ll}
X \rightarrow Y: & \{M, X\}_{K_{Y}} \\
Y \rightarrow X: & \{M\}_{K_{X}}
\end{array}
$$

We need to show that the protocol is secure.
For simplicity we work with the following rules for intruder's knowledge. Intruder knows $E_{B}\left(i_{A}(M)\right)$.
If intruder knows $E_{Y}\left(i_{A}(x)\right)$ then intruder knows $E_{X}(x)$.
(Besides we have computation abilities of the intruder.)
For general protocols, we need to use multiset rewriting rules.
As usual we have two honest agents A, B and a dishonest agent C.

Idea: we look at the shape of messages that may be known to the intruder.
Messages involved are of the form $w \cdot M$ where w is a string of symbols $E_{A}, E_{B}, E_{C}, i_{A}, i_{B}, i_{C}$.
E.g. the message $E_{B}\left(i_{A}(M)\right)$ is written as $E_{B} \cdot i_{A} \cdot M$.

Claim: every message known to the intruder is of one of the following two forms

1. $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w
2. $w \cdot E_{A} \cdot M$ for some string w

The first message $E_{B} \cdot i_{A} \cdot M$ known to the intruder is clearly of this form. (Here w is the empty string.)

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(1) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w.

Cases:

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(1) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w.

Cases:

- $|x| \geq 3$. Then x is of the form $w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$.

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(1) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w.

Cases:

- $|x| \geq 3$. Then x is of the form $w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$.
- $|x|=2$. We must have $x=i_{A} \cdot M$ and $i_{X}=E_{B}$, which is impossible.

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(1) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w.

Cases:

- $|x| \geq 3$. Then x is of the form $w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$.
- $|x|=2$. We must have $x=i_{A} \cdot M$ and $i_{X}=E_{B}$, which is impossible.
- $|x|=1$. We have $x=M, Y=B$ and $X=A$. The new message $E_{X} \cdot M=E_{A} \cdot M$ is of the required form.

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(1) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w.

Cases:

- $|x| \geq 3$. Then x is of the form $w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{B} \cdot i_{A} \cdot M$.
- $|x|=2$. We must have $x=i_{A} \cdot M$ and $i_{X}=E_{B}$, which is impossible.
- $|x|=1$. We have $x=M, Y=B$ and $X=A$. The new message $E_{X} \cdot M=E_{A} \cdot M$ is of the required form.
- $|x|=0$. We must have $i_{X}=M$ which is impossible.

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(2) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{A} \cdot M$ for some string w.

Cases:

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(2) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{A} \cdot M$ for some string w. Cases:

- $|x| \geq 2$. Then x is of the form $w^{\prime} \cdot E_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{A} \cdot M$.

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(2) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{A} \cdot M$ for some string w. Cases:

- $|x| \geq 2$. Then x is of the form $w^{\prime} \cdot E_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{A} \cdot M$.
- $|x|=1$. We must have $x=M$ and $i_{X}=E_{A}$, which is impossible.

Now we consider a protocol step.
The intruder already knows $E_{Y} \cdot i_{X} \cdot x$ using which he learns $E_{X} \cdot x$.
(2) Suppose $E_{Y} \cdot i_{X} \cdot x$ is of the form $w \cdot E_{A} \cdot M$ for some string w. Cases:

- $|x| \geq 2$. Then x is of the form $w^{\prime} \cdot E_{A} \cdot M$ and $w=E_{Y} \cdot i_{X} \cdot w^{\prime}$. Hence $E_{X} \cdot x$ is of the form $E_{X} \cdot w^{\prime} \cdot E_{A} \cdot M$.
- $|x|=1$. We must have $x=M$ and $i_{X}=E_{A}$, which is impossible.
- $|x|=0$. We must have $i_{X}=M$ which is impossible.

Finally we consider intruder computations.
The intruder knows a message w_{1} of the form

1. $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w
2. or $w \cdot E_{A} \cdot M$ for some string w

Finally we consider intruder computations.
The intruder knows a message w_{1} of the form

1. $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w
2. or $w \cdot E_{A} \cdot M$ for some string w

- If the intruder computes $E_{X} \cdot w_{1}$ or $i_{X} \cdot w_{1}$ (pushing a new symbol) then this new message is of the required form.

Finally we consider intruder computations.
The intruder knows a message w_{1} of the form

1. $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w
2. or $w \cdot E_{A} \cdot M$ for some string w

- If the intruder computes $E_{X} \cdot w_{1}$ or $i_{X} \cdot w_{1}$ (pushing a new symbol) then this new message is of the required form.
- Now suppose the intruder pops a symbol i_{X}. This is possible only if $w=i_{X} \cdot w^{\prime}$. Hence the new message is of the required form.

Finally we consider intruder computations.
The intruder knows a message w_{1} of the form

1. $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w
2. or $w \cdot E_{A} \cdot M$ for some string w

- If the intruder computes $E_{X} \cdot w_{1}$ or $i_{X} \cdot w_{1}$ (pushing a new symbol) then this new message is of the required form.
- Now suppose the intruder pops a symbol i_{X}. This is possible only if $w=i_{X} \cdot w^{\prime}$. Hence the new message is of the required form.
- Now suppose the intruder pops a symbol E_{C}. This is possible only if $w=E_{C} \cdot w^{\prime}$. Hence the new message is of the required form.

Finally we consider intruder computations.
The intruder knows a message w_{1} of the form

1. $w \cdot E_{B} \cdot i_{A} \cdot M$ for some string w
2. or $w \cdot E_{A} \cdot M$ for some string w

- If the intruder computes $E_{X} \cdot w_{1}$ or $i_{X} \cdot w_{1}$ (pushing a new symbol) then this new message is of the required form.
- Now suppose the intruder pops a symbol i_{X}. This is possible only if $w=i_{X} \cdot w^{\prime}$. Hence the new message is of the required form.
- Now suppose the intruder pops a symbol E_{C}. This is possible only if $w=E_{C} \cdot w^{\prime}$. Hence the new message is of the required form.

Hence the protocol is secure :-)

Some Key Distribution Protocols

Diffie-Hellman secret-key exchange protocol

Due to Diffie and Hellman (1976).
Two parties A and B have no symmetric or asymmetric keys, and want to agree on a common key to be used for symmetric encryption.

Fix a prime number p.

$$
\mathbb{Z}_{p}^{*}=\{x \mid 0<x<p, \operatorname{gcd}(x, p)=1\}
$$

As p is prime, $\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}$.
For every prime p there is some $g \in \mathbb{Z}_{p}^{*}$ such that

$$
\mathbb{Z}_{p}^{*}=\left\{g^{0} \bmod p, \ldots, g^{p-2} \bmod p\right\}
$$

g is called the generator of \mathbb{Z}_{p}^{*}.

The protocol

The prime p and the generator g are known to everybody.

- A randomly chooses $0 \leq N_{a} \leq p-2$ and sends $X=g^{N_{a}} \bmod p$ to B.
- B randomly chooses $0 \leq N_{b} \leq p-2$ and sends $Y=g^{N_{b}} \bmod p$ to A.
- A computes $Y^{N_{a}}$ as the secret key.
- B computes $X^{N_{b}}$ as the secret key.

$$
X^{N_{b}}=\left(g^{N_{a}}\right)^{N_{b}}=g^{N_{a} N_{b}}=\left(g^{N_{b}}\right)^{N_{a}}=Y^{N_{a}} \quad(\bmod p)
$$

