
Our old protocol . . .

X → Y : {M}KY
, X

Y → X: {M}KX

. . . and the familiar attack

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

an attack with 4 agents . . .

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, h3

h2 sends {M}Kh3

h3 gets {M}Kh3
, d

h3 sends {M}Kd

. . . after projection

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

d gets {M}Kd
, d

d sends {M}Kd

Our old protocol . . .

X → Y : {M}KY
, X

Y → X: {M}KX

. . . and the familiar attack

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

an attack with 4 agents . . .

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, h3

h2 sends {M}Kh3

h3 gets {M}Kh3
, d

h3 sends {M}Kd

. . . after projection

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

d gets {M}Kd
, d

d sends {M}Kd

Our old protocol . . .

X → Y : {M}KY
, X

Y → X: {M}KX

. . . and the familiar attack

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

an attack with 4 agents . . .

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, h3

h2 sends {M}Kh3

h3 gets {M}Kh3
, d

h3 sends {M}Kd

. . . after projection

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

d gets {M}Kd
, d

d sends {M}Kd

Our old protocol . . .

X → Y : {M}KY
, X

Y → X: {M}KX

. . . and the familiar attack

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

an attack with 4 agents . . .

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, h3

h2 sends {M}Kh3

h3 gets {M}Kh3
, d

h3 sends {M}Kd

. . . after projection

h1 sends {M}Kh2
, h1

h2 gets {M}Kh2
, d

h2 sends {M}Kd

d gets {M}Kd
, d

d sends {M}Kd

The protocol is described as follows.

With three honest and one dishonest agent:

 Ha(h1) Ha(h2) Ha(h3) Da(d)

Ha(x) Agent(x), Ha(x) Da(x) Agent(x), Da(x)

Agent(x) I(x), I(pub(x)), Agent(x) Da(x) I(prv(x)), Da(x)

 Distinct(h1, h2)

 Distinct(h2, h1)

 Distinct(h2, h3)

. . .

 Distinct(h1, d)

 Distinct(d, h1)

 Distinct(h2, d)

. . .

 Distinct(d, d)

The protocol is described as follows.

With three honest and one dishonest agent:

 Ha(h1) Ha(h2) Ha(h3) Da(d)

Ha(x) Agent(x), Ha(x) Da(x) Agent(x), Da(x)

Agent(x) I(x), I(pub(x)), Agent(x) Da(x) I(prv(x)), Da(x)

 Distinct(h1, h2)

 Distinct(h2, h1)

 Distinct(h2, h3)

. . .

 Distinct(h1, d)

 Distinct(d, h1)

 Distinct(h2, d)

. . .

 Distinct(d, d)

The protocol is described as follows.

With three honest and one dishonest agent:

 Ha(h1) Ha(h2) Ha(h3) Da(d)

Ha(x) Agent(x), Ha(x) Da(x) Agent(x), Da(x)

Agent(x) I(x), I(pub(x)), Agent(x) Da(x) I(prv(x)), Da(x)

 Distinct(h1, h2)

 Distinct(h2, h1)

 Distinct(h2, h3)

. . .

 Distinct(h1, d)

 Distinct(d, h1)

 Distinct(h2, d)

. . .

 Distinct(d, d)

The protocol is described as follows.

With three honest and one dishonest agent:

 Ha(h1) Ha(h2) Ha(h3) Da(d)

Ha(x) Agent(x), Ha(x) Da(x) Agent(x), Da(x)

Agent(x) I(x), I(pub(x)), Agent(x) Da(x) I(prv(x)), Da(x)

 Distinct(h1, h2)

 Distinct(h2, h1)

 Distinct(h2, h3)

. . .

 Distinct(h1, d)

 Distinct(d, h1)

 Distinct(h2, d)

. . .

 Distinct(d, d)

The usual rules for intruder actions

I(x), I(y) I(〈x, y〉), I(x), I(y)

I(〈x, y〉) I(x), I(y), I(〈x, y〉)

I(x), I(y) I({x}y), I(x), I(y)

I({x}pub(y)), I(prv(y)) I(x), I({x}pub(y)), I(prv(y))

I({x}prv(y)), I(pub(y)) I(x), I({x}prv(y)), I(pub(y))

 ∃n · I(n)

And the protocol specific rules

Agent(x), Agent(y),

Distinct(x, y)

A0(x, y), B0(x, y), Agent(x), Agent(y),

Distinct(x, y)

A0(x, y) ∃z · A1(x, y, z), I(〈{z}pub(y), x〉)

B0(x, y), I(〈{z}pub(y), x〉) B1(x, y, z), I({z}pub(x)), I(〈{z}pub(y), x〉)

A1(x, y, z), I({z}pub(x)) A2(x, y, z), I({z}pub(x))

Security question: is a protocol state reachable containing the pattern

Ha(x), Ha(y), A2(x, y, z), I(z)

And the protocol specific rules

Agent(x), Agent(y),

Distinct(x, y)

A0(x, y), B0(x, y), Agent(x), Agent(y),

Distinct(x, y)

A0(x, y) ∃z · A1(x, y, z), I(〈{z}pub(y), x〉)

B0(x, y), I(〈{z}pub(y), x〉) B1(x, y, z), I({z}pub(x)), I(〈{z}pub(y), x〉)

A1(x, y, z), I({z}pub(x)) A2(x, y, z), I({z}pub(x))

Security question: is a protocol state reachable containing the pattern

Ha(x), Ha(y), A2(x, y, z), I(z)

And the protocol specific rules

Agent(x), Agent(y),

Distinct(x, y)

A0(x, y), B0(x, y), Agent(x), Agent(y),

Distinct(x, y)

A0(x, y) ∃z · A1(x, y, z), I(〈{z}pub(y), x〉)

B0(x, y), I(〈{z}pub(y), x〉) B1(x, y, z), I({z}pub(x)), I(〈{z}pub(y), x〉)

A1(x, y, z), I({z}pub(x)) A2(x, y, z), I({z}pub(x))

Security question: is a protocol state reachable containing the pattern

Ha(x), Ha(y), A2(x, y, z), I(z)

And the protocol specific rules

Agent(x), Agent(y),

Distinct(x, y)

A0(x, y), B0(x, y), Agent(x), Agent(y),

Distinct(x, y)

A0(x, y) ∃z · A1(x, y, z), I(〈{z}pub(y), x〉)

B0(x, y), I(〈{z}pub(y), x〉) B1(x, y, z), I({z}pub(x)), I(〈{z}pub(y), x〉)

A1(x, y, z), I({z}pub(x)) A2(x, y, z), I({z}pub(x))

Security question: is a protocol state reachable containing the pattern

Ha(x), Ha(y), A2(x, y, z), I(z)

And the protocol specific rules

Agent(x), Agent(y),

Distinct(x, y)

A0(x, y), B0(x, y), Agent(x), Agent(y),

Distinct(x, y)

A0(x, y) ∃z · A1(x, y, z), I(〈{z}pub(y), x〉)

B0(x, y), I(〈{z}pub(y), x〉) B1(x, y, z), I({z}pub(x)), I(〈{z}pub(y), x〉)

A1(x, y, z), I({z}pub(x)) A2(x, y, z), I({z}pub(x))

Security question: is a protocol state reachable containing the pattern

Ha(x), Ha(y), A2(x, y, z), I(z)

We can apply these rules to get a protocol state of the form

Ha(h1), Ha(h2), Ha(h3), Da(d), Agent(h1), Agent(h2), Agent(h3),

Agent(d), Distinct(h1, h2), Distinct(h3, h2), Distinct(d, h3),

A2(h1, h2,m), B0(h1, h2), A0(h3, h2), B1(h3, h2,m),

A0(d, h3), B1(d, h3,m), I({m}pub(h2), h1), I({m}pub(h2), h3),

I({m}pub(h3)), I({m}pub(h3), d), I({m}pub(d)), I(m), I({m}pub(h1))

I(. . .) . . . I(. . .)

We get the following without using the rules involving h3 (apply proj)

Ha(h1), Ha(h2), Da(d), Da(d), Agent(h1), Agent(h2), Agent(d),

Agent(d), Distinct(h1, h2), Distinct(d, h2), Distinct(d, d),

A2(h1, h2,m), B0(h1, h2), A0(d, h2), B1(d, h2,m),

A0(d, d), B1(d, d,m), I({m}pub(h2), h1), I({m}pub(h2), d),

I({m}pub(d)), I({m}pub(d), d), I({m}pub(d)), I(m), I({m}pub(h1)) . . .

We can apply these rules to get a protocol state of the form

Ha(h1), Ha(h2), Ha(h3), Da(d), Agent(h1), Agent(h2), Agent(h3),

Agent(d), Distinct(h1, h2), Distinct(h3, h2), Distinct(d, h3),

A2(h1, h2,m), B0(h1, h2), A0(h3, h2), B1(h3, h2,m),

A0(d, h3), B1(d, h3,m), I({m}pub(h2), h1), I({m}pub(h2), h3),

I({m}pub(h3)), I({m}pub(h3), d), I({m}pub(d)), I(m), I({m}pub(h1))

I(. . .) . . . I(. . .)

We get the following without using the rules involving h3 (apply proj)

Ha(h1), Ha(h2), Da(d), Da(d), Agent(h1), Agent(h2), Agent(d),

Agent(d), Distinct(h1, h2), Distinct(d, h2), Distinct(d, d),

A2(h1, h2,m), B0(h1, h2), A0(d, h2), B1(d, h2,m),

A0(d, d), B1(d, d,m), I({m}pub(h2), h1), I({m}pub(h2), d),

I({m}pub(d)), I({m}pub(d), d), I({m}pub(d)), I(m), I({m}pub(h1)) . . .

k + 1 is a tight bound

A toy variant of the Needham-Schroeder public key protocol:

A1 → A2 : {A1, A2, . . . , Ak, NA1}KA2

A2 → A1 : {NA1 , NA2}KA1

A1 → A2 : {NA2}KA2

Other steps involving A2, A3, . . . could be added to make it more realistic.

This is modeled using similar rules as before. The agents A1, . . . , Ak are

required to be distinct.

There is a standard attack involving k + 1 agents.

k honest agents are required for the two nonces to be generated, and a

dishonest agent for decryption of messages.

For k = 3 we have the following rules.

Agent(x1), Agent(x2), Agent(x3),Distinct(x1, x2),Distinct(x2, x3),

Distinct(x1, x3) A1,0(x1, x2, x3), A2,0(x1, x2, x3), Agent(x1), Agent(x2),

Agent(x3),Distinct(x1, x2),Distinct(x2, x3),Distinct(x1, x3)

A1,0(x1, x2, x3) ∃z ·A1,1(x1, x2, x3, z), I({x1, x2, x3, z}pub(x2))

A2,0(x1, x2, x3), I({x1, x2, x3, z}pub(x2))

∃w ·A2,1(x1, x2, x3, z, w), I({z, w}pub(x1)), I({x1, x2, x3, z}pub(x2))

A1,1(x1, x2, x3, z), I({z, w}pub(x1))

A1,2(x1, x2, x3, z, w), I({w}pub(x2)), I({z, w}pub(x1))

A2,1(x1, x2, x3, z, w), I({w}pub(x2)) A2,2(x1, x2, x3, z, w), I({w}pub(x2))

Security questions: can a protocol state be reached which contains

• Ha(x1), Ha(x2), Ha(x3), A1,2(x1, x2, x3, z, w), I(z).

• Ha(x1), Ha(x2), Ha(x3), A1,2(x1, x2, x3, z, w), I(w).

• Ha(x1), Ha(x2), Ha(x3), A2,2(x1, x2, x3, z, w), I(z).

• Ha(x1), Ha(x2), Ha(x3), A2,2(x1, x2, x3, z, w), I(w).

The first two represent the security questions about nonces NA1 and NA2

respectively from the point of view of A1.

The last two represent the security questions about nonces NA1 and NA2

respectively from the point of view of A2.

The standard man-in-the-middle attack.

We use honest agents A1, A2, A3 and dishonest agent C (k = 3)

A1 → C : {A1, C,A3, . . . , Ak, NA1}KC

C(A1)→ A2 : {A1, A2, A3, . . . , Ak, NA1}KA2

A2 → A1 : {NA1 , NA2}KA1

A1 → C : {NA2}KC

C(A1)→ A2 : {NA2}KA2

Using our rules, we get a protocol state of the form

Ha(a1), Ha(a2), Ha(a3), Da(d),

A1,2(a1, d, a3, n,m), A2,2(a1, a2, a3, n,m), I(n), I(m), . . .

Hence both security questions from the point of view of A2 are violated.

The standard man-in-the-middle attack.

We use honest agents A1, A2, A3 and dishonest agent C (k = 3)

A1 → C : {A1, C,A3, . . . , Ak, NA1}KC

C(A1)→ A2 : {A1, A2, A3, . . . , Ak, NA1}KA2

A2 → A1 : {NA1 , NA2}KA1

A1 → C : {NA2}KC

C(A1)→ A2 : {NA2}KA2

Using our rules, we get a protocol state of the form

Ha(a1), Ha(a2), Ha(a3), Da(d),

A1,2(a1, d, a3, n,m), A2,2(a1, a2, a3, n,m), I(n), I(m), . . .

Hence both security questions from the point of view of A2 are violated.

Also, a protocol state containing A2,2(x1, x2, x3, z, w) can be reached only

if x1, x2, x3 are mutually distinct.

The conditions Ha(x1), Ha(x2), Ha(x3) in the security property mean

that these three agents should be honest.

Hence we require at least 3 honest agents for an attack.

In the absence of a dishonest agent, messages containing w known to the

intruder always encrypted with public keys of honest agents.

Hence w can never be known to the intruder.

Hence an attack against the fourth security property requires at least 4

agents (k + 1 agents in general).

Sometimes certain special names can be used in protocol: e.g. servers.

These are not counted in the number of agents required for an attack.

A→ B : A,Na

B → S : B, {A,Na, Nb}Kbs

S → A : {B,Kab, Na, Nb}Kas
, {A,Kab}Kbs

A→ B : {A,Kab}Kbs
, {Nb}Kab

This is the Yahalom protocol.

We use a special agent name server and the rule

 Agent(server)

No rules of the form Ha(server) or Da(server).

No rules to state whether server is distinct from other agents.

Protocol rules may involve these special names.

Agent(x), Agent(y), Distinct(x, y) A0(x, y, server), B0(x, y, server),

S0(x, y, server), Agent(x), Agent(y), Distinct(x, y)

Security properties are of the form

Ha(x), Ha(y), A2(x, y, server, z, u, v), I(v)

In this example we have k = 2 (server is not counted).

An attack requires k + 1 = 3 agents besides the server.

Without the Distinct predicates, an attack requires 2 agents besides the

server.

• Two agents suffice for detecting attacks when agents involved in a

session need not all be distinct.

• Otherwise k + 1 agents suffice where k is the number of

honest agents involved in the security property.

• The protocols must be independent of agent names.

• Security properties must be independent of agent names.

• Security properties must be reachability properties.

• Still this does not give us a method to check these security properties.

An example of protocol analysis ‘by hand’
Our familiar ping-pong protocol

X → Y : {M,X}KY

Y → X: {M}KX

We need to show that the protocol is secure.

For simplicity we work with the following rules for intruder’s knowledge.

Intruder knows EB(iA(M)).

If intruder knows EY (iA(x)) then intruder knows EX(x).

(Besides we have computation abilities of the intruder.)

For general protocols, we need to use multiset rewriting rules.

As usual we have two honest agents A,B and a dishonest agent C.

Idea: we look at the shape of messages that may be known to the intruder.

Messages involved are of the form w ·M where w is a string of symbols

EA, EB, EC , iA, iB, iC .

E.g. the message EB(iA(M)) is written as EB · iA ·M .

Claim: every message known to the intruder is of one of the following two

forms

1. w · EB · iA ·M for some string w

2. w · EA ·M for some string w

The first message EB · iA ·M known to the intruder is clearly of this form.

(Here w is the empty string.)

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(1) Suppose EY · iX · x is of the form w · EB · iA ·M for some string w.

Cases:

• |x| ≥ 3. Then x is of the form w′ · EB · iA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EB · iA ·M .

• |x| = 2. We must have x = iA ·M and iX = EB, which is impossible.

• |x| = 1. We have x = M , Y = B and X = A. The new message

EX ·M = EA ·M is of the required form.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(1) Suppose EY · iX · x is of the form w · EB · iA ·M for some string w.

Cases:

• |x| ≥ 3. Then x is of the form w′ · EB · iA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EB · iA ·M .

• |x| = 2. We must have x = iA ·M and iX = EB, which is impossible.

• |x| = 1. We have x = M , Y = B and X = A. The new message

EX ·M = EA ·M is of the required form.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(1) Suppose EY · iX · x is of the form w · EB · iA ·M for some string w.

Cases:

• |x| ≥ 3. Then x is of the form w′ · EB · iA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EB · iA ·M .

• |x| = 2. We must have x = iA ·M and iX = EB, which is impossible.

• |x| = 1. We have x = M , Y = B and X = A. The new message

EX ·M = EA ·M is of the required form.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(1) Suppose EY · iX · x is of the form w · EB · iA ·M for some string w.

Cases:

• |x| ≥ 3. Then x is of the form w′ · EB · iA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EB · iA ·M .

• |x| = 2. We must have x = iA ·M and iX = EB, which is impossible.

• |x| = 1. We have x = M , Y = B and X = A. The new message

EX ·M = EA ·M is of the required form.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(1) Suppose EY · iX · x is of the form w · EB · iA ·M for some string w.

Cases:

• |x| ≥ 3. Then x is of the form w′ · EB · iA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EB · iA ·M .

• |x| = 2. We must have x = iA ·M and iX = EB, which is impossible.

• |x| = 1. We have x = M , Y = B and X = A. The new message

EX ·M = EA ·M is of the required form.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(2) Suppose EY · iX · x is of the form w · EA ·M for some string w.

Cases:

• |x| ≥ 2. Then x is of the form w′ · EA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EA ·M .

• |x| = 1. We must have x = M and iX = EA, which is impossible.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(2) Suppose EY · iX · x is of the form w · EA ·M for some string w.

Cases:

• |x| ≥ 2. Then x is of the form w′ · EA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EA ·M .

• |x| = 1. We must have x = M and iX = EA, which is impossible.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(2) Suppose EY · iX · x is of the form w · EA ·M for some string w.

Cases:

• |x| ≥ 2. Then x is of the form w′ · EA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EA ·M .

• |x| = 1. We must have x = M and iX = EA, which is impossible.

• |x| = 0. We must have iX = M which is impossible.

Now we consider a protocol step.

The intruder already knows EY · iX · x using which he learns EX · x.

(2) Suppose EY · iX · x is of the form w · EA ·M for some string w.

Cases:

• |x| ≥ 2. Then x is of the form w′ · EA ·M and w = EY · iX · w
′.

Hence EX · x is of the form EX · w
′ · EA ·M .

• |x| = 1. We must have x = M and iX = EA, which is impossible.

• |x| = 0. We must have iX = M which is impossible.

Finally we consider intruder computations.

The intruder knows a message w1 of the form

1. w · EB · iA ·M for some string w

2. or w · EA ·M for some string w

• If the intruder computes EX · w1 or iX · w1 (pushing a new symbol)

then this new message is of the required form.

• Now suppose the intruder pops a symbol iX . This is possible only if

w = iX · w
′. Hence the new message is of the required form.

• Now suppose the intruder pops a symbol EC . This is possible only if

w = EC · w
′. Hence the new message is of the required form.

Hence the protocol is secure :-)

Finally we consider intruder computations.

The intruder knows a message w1 of the form

1. w · EB · iA ·M for some string w

2. or w · EA ·M for some string w

• If the intruder computes EX · w1 or iX · w1 (pushing a new symbol)

then this new message is of the required form.

• Now suppose the intruder pops a symbol iX . This is possible only if

w = iX · w
′. Hence the new message is of the required form.

• Now suppose the intruder pops a symbol EC . This is possible only if

w = EC · w
′. Hence the new message is of the required form.

Hence the protocol is secure :-)

Finally we consider intruder computations.

The intruder knows a message w1 of the form

1. w · EB · iA ·M for some string w

2. or w · EA ·M for some string w

• If the intruder computes EX · w1 or iX · w1 (pushing a new symbol)

then this new message is of the required form.

• Now suppose the intruder pops a symbol iX . This is possible only if

w = iX · w
′. Hence the new message is of the required form.

• Now suppose the intruder pops a symbol EC . This is possible only if

w = EC · w
′. Hence the new message is of the required form.

Hence the protocol is secure :-)

Finally we consider intruder computations.

The intruder knows a message w1 of the form

1. w · EB · iA ·M for some string w

2. or w · EA ·M for some string w

• If the intruder computes EX · w1 or iX · w1 (pushing a new symbol)

then this new message is of the required form.

• Now suppose the intruder pops a symbol iX . This is possible only if

w = iX · w
′. Hence the new message is of the required form.

• Now suppose the intruder pops a symbol EC . This is possible only if

w = EC · w
′. Hence the new message is of the required form.

Hence the protocol is secure :-)

Finally we consider intruder computations.

The intruder knows a message w1 of the form

1. w · EB · iA ·M for some string w

2. or w · EA ·M for some string w

• If the intruder computes EX · w1 or iX · w1 (pushing a new symbol)

then this new message is of the required form.

• Now suppose the intruder pops a symbol iX . This is possible only if

w = iX · w
′. Hence the new message is of the required form.

• Now suppose the intruder pops a symbol EC . This is possible only if

w = EC · w
′. Hence the new message is of the required form.

Hence the protocol is secure :-)

Some Key Distribution Protocols

Diffie-Hellman secret-key exchange
protocol

Due to Diffie and Hellman (1976).

Two parties A and B have no symmetric or asymmetric keys, and want to

agree on a common key to be used for symmetric encryption.

Fix a prime number p.

Z
∗
p = {x | 0 < x < p, gcd(x, p) = 1}

As p is prime, Z
∗
p = {1, . . . , p− 1}.

For every prime p there is some g ∈ Z
∗
p such that

Z
∗
p = {g0 mod p, . . . , gp−2 mod p}

g is called the generator of Z
∗
p.

The protocol

The prime p and the generator g are known to everybody.

• A randomly chooses 0 ≤ Na ≤ p− 2 and sends X = gNa mod p to B.

• B randomly chooses 0 ≤ Nb ≤ p− 2 and sends Y = gNb mod p to A.

• A computes Y Na as the secret key.

• B computes XNb as the secret key.

XNb = (gNa)Nb = gNaNb = (gNb)Na = Y Na (mod p)

