Our old protocol ...

 $X \to Y$: $\{M\}_{K_Y}, X$ $Y \to X$: $\{M\}_{K_X}$ Our old protocol ... $X \to Y$: $\{M\}_{K_Y}, X$ $Y \to X$: $\{M\}_{K_X}$... and the familiar attack

 $egin{aligned} h_1 ext{ sends } & \{M\}_{K_{h_2}}, h_1 \ h_2 ext{ gets } & \{M\}_{K_{h_2}}, d \ h_2 ext{ sends } & \{M\}_{K_d} \end{aligned}$

Our old protocol ... $X \to Y$: $\{M\}_{K_Y}, X$ $Y \to X$: $\{M\}_{K_X}$... and the familiar attack

 $egin{aligned} h_1 ext{ sends } & \{M\}_{K_{h_2}}, h_1 \ h_2 ext{ gets } & \{M\}_{K_{h_2}}, d \ h_2 ext{ sends } & \{M\}_{K_d} \end{aligned}$

an attack with 4 agents ...

 $egin{aligned} h_1 \ {
m sends} & \{M\}_{K_{h_2}}, h_1 \ h_2 \ {
m gets} & \{M\}_{K_{h_2}}, h_3 \ h_2 \ {
m sends} & \{M\}_{K_{h_3}} \ h_3 \ {
m gets} & \{M\}_{K_{h_3}}, d \ h_3 \ {
m sends} & \{M\}_{K_{h_3}}, d \ h_3 \ {
m sends} & \{M\}_{K_{d_3}} \end{aligned}$

Our old protocol ... $X \to Y$: $\{M\}_{K_Y}, X$ $Y \to X$: $\{M\}_{K_X}$

an attack with 4 agents h_1 sends $\{M\}_{K_{h_2}}, h_1$ h_2 gets $\{M\}_{K_{h_2}}, h_3$ h_2 sends $\{M\}_{K_{h_3}}$ h_3 gets $\{M\}_{K_{h_3}}, d$ h_3 sends $\{M\}_{K_d}$... and the familiar attack

 $egin{aligned} h_1 \ {
m sends} & \{M\}_{K_{h_2}}, h_1 \ h_2 \ {
m gets} & \{M\}_{K_{h_2}}, d \ h_2 \ {
m sends} & \{M\}_{K_d} \end{aligned}$

... after projection h_1 sends $\{M\}_{K_{h_2}}, h_1$ h_2 gets $\{M\}_{K_{h_2}}, d$ h_2 sends $\{M\}_{K_d}$ d gets $\{M\}_{K_d}, d$ d sends $\{M\}_{K_d}$

With three honest and one dishonest agent:

$$\rightsquigarrow Ha(h_1) \qquad \qquad \rightsquigarrow Ha(h_2) \qquad \qquad \rightsquigarrow Ha(h_3) \qquad \qquad \rightsquigarrow Da(d)$$

With three honest and one dishonest agent:

With three honest and one dishonest agent:

. . .

With three honest and one dishonest agent:

 $\rightsquigarrow Ha(h_1)$ $\rightsquigarrow Ha(h_2)$ $\rightsquigarrow Ha(h_3)$ $\rightsquigarrow Da(d)$ $Ha(x) \rightsquigarrow Agent(x), Ha(x)$ $Da(x) \rightsquigarrow Agent(x), Da(x)$ $Agent(x) \rightsquigarrow I(x), I(pub(x)), Agent(x)$ $Da(x) \rightsquigarrow I(prv(x)), Da(x)$ $\rightsquigarrow Distinct(h_1, h_2)$ $\rightsquigarrow Distinct(h_1, d)$ $\rightsquigarrow Distinct(d, h_1)$ $\rightsquigarrow Distinct(h_2, h_1)$ $\rightsquigarrow Distinct(d, d)$ $\rightsquigarrow Distinct(h_2, h_3)$ $\rightsquigarrow Distinct(h_2, d)$

. . .

The usual rules for intruder actions

Agent(x), Agent(y),Distinct(x, y) $\stackrel{A_0(x,y), B_0(x,y), Agent(x), Agent(y),}{\longrightarrow} \\ \frac{Distinct(x,y)}{Distinct(x,y)}$

 $\begin{array}{rcl} Agent(x), Agent(y), & & & & & & & \\ Distinct(x,y) & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$

Security question: is a protocol state reachable containing the pattern $Ha(x), Ha(y), A_2(x, y, z), I(z)$

We can apply these rules to get a protocol state of the form

 $\begin{array}{l} Ha(h_1), Ha(h_2), Ha(h_3), Da(d), Agent(h_1), Agent(h_2), Agent(h_3), \\ Agent(d), Distinct(h_1, h_2), Distinct(h_3, h_2), Distinct(d, h_3), \\ A_2(h_1, h_2, m), B_0(h_1, h_2), A_0(h_3, h_2), B_1(h_3, h_2, m), \\ A_0(d, h_3), B_1(d, h_3, m), I(\{m\}_{pub(h_2)}, h_1), I(\{m\}_{pub(h_2)}, h_3), \\ I(\{m\}_{pub(h_3)}), I(\{m\}_{pub(h_3)}, d), I(\{m\}_{pub(d)}), I(m), I(\{m\}_{pub(h_1)}) \\ I(\ldots) \ldots I(\ldots) \end{array}$

We can apply these rules to get a protocol state of the form

 $\begin{array}{l} Ha(h_1), Ha(h_2), Ha(h_3), Da(d), Agent(h_1), Agent(h_2), Agent(h_3), \\ Agent(d), Distinct(h_1, h_2), Distinct(h_3, h_2), Distinct(d, h_3), \\ A_2(h_1, h_2, m), B_0(h_1, h_2), A_0(h_3, h_2), B_1(h_3, h_2, m), \\ A_0(d, h_3), B_1(d, h_3, m), I(\{m\}_{pub(h_2)}, h_1), I(\{m\}_{pub(h_2)}, h_3), \\ I(\{m\}_{pub(h_3)}), I(\{m\}_{pub(h_3)}, d), I(\{m\}_{pub(d)}), I(m), I(\{m\}_{pub(h_1)}) \\ I(\ldots) \ldots I(\ldots) \end{array}$

We get the following without using the rules involving h_3 (apply proj) $Ha(h_1), Ha(h_2), Da(d), Da(d), Agent(h_1), Agent(h_2), Agent(d),$ $Agent(d), Distinct(h_1, h_2), Distinct(d, h_2), Distinct(d, d),$ $A_2(h_1, h_2, m), B_0(h_1, h_2), A_0(d, h_2), B_1(d, h_2, m),$ $A_0(d, d), B_1(d, d, m), I(\{m\}_{pub(h_2)}, h_1), I(\{m\}_{pub(h_2)}, d),$ $I(\{m\}_{pub(d)}), I(\{m\}_{pub(d)}, d), I(\{m\}_{pub(d)}), I(m), I(\{m\}_{pub(h_1)})...$

k+1 is a tight bound

A toy variant of the Needham-Schroeder public key protocol:

 $A_1 \to A_2 : \{A_1, A_2, \dots, A_k, N_{A_1}\}_{K_{A_2}}$ $A_2 \to A_1 : \{N_{A_1}, N_{A_2}\}_{K_{A_1}}$ $A_1 \to A_2 : \{N_{A_2}\}_{K_{A_2}}$

Other steps involving A_2, A_3, \ldots could be added to make it more realistic.

This is modeled using similar rules as before. The agents A_1, \ldots, A_k are required to be distinct.

There is a standard attack involving k + 1 agents.

k honest agents are required for the two nonces to be generated, and a dishonest agent for decryption of messages.

For k = 3 we have the following rules.

 $\begin{array}{l} Agent(x_{1}), Agent(x_{2}), Agent(x_{3}), Distinct(x_{1}, x_{2}), Distinct(x_{2}, x_{3}), \\ Distinct(x_{1}, x_{3}) \rightsquigarrow A_{1,0}(x_{1}, x_{2}, x_{3}), A_{2,0}(x_{1}, x_{2}, x_{3}), Agent(x_{1}), Agent(x_{2}), \\ Agent(x_{3}), Distinct(x_{1}, x_{2}), Distinct(x_{2}, x_{3}), Distinct(x_{1}, x_{3}) \end{array}$

$$A_{1,0}(x_1, x_2, x_3) \rightsquigarrow \exists z \cdot A_{1,1}(x_1, x_2, x_3, z), I(\{x_1, x_2, x_3, z\}_{pub(x_2)})$$

$$\begin{aligned} A_{2,0}(x_1, x_2, x_3), &I(\{x_1, x_2, x_3, z\}_{pub(x_2)}) \rightsquigarrow \\ \exists w \cdot A_{2,1}(x_1, x_2, x_3, z, w), &I(\{z, w\}_{pub(x_1)}), &I(\{x_1, x_2, x_3, z\}_{pub(x_2)}) \end{aligned}$$

 $\begin{array}{c} A_{1,1}(x_1, x_2, x_3, z), I(\{z, w\}_{pub(x_1)}) \rightsquigarrow \\ \\ A_{1,2}(x_1, x_2, x_3, z, w), I(\{w\}_{pub(x_2)}), I(\{z, w\}_{pub(x_1)}) \end{array}$

 $A_{2,1}(x_1, x_2, x_3, z, w), I(\{w\}_{pub(x_2)}) \rightsquigarrow A_{2,2}(x_1, x_2, x_3, z, w), I(\{w\}_{pub(x_2)})$

Security questions: can a protocol state be reached which contains

- $Ha(x_1), Ha(x_2), Ha(x_3), A_{1,2}(x_1, x_2, x_3, z, w), I(z).$
- $Ha(x_1), Ha(x_2), Ha(x_3), A_{1,2}(x_1, x_2, x_3, z, w), I(w).$
- $Ha(x_1), Ha(x_2), Ha(x_3), A_{2,2}(x_1, x_2, x_3, z, w), I(z).$
- $Ha(x_1), Ha(x_2), Ha(x_3), A_{2,2}(x_1, x_2, x_3, z, w), I(w).$

The first two represent the security questions about nonces N_{A_1} and N_{A_2} respectively from the point of view of A_1 .

The last two represent the security questions about nonces N_{A_1} and N_{A_2} respectively from the point of view of A_2 .

The standard man-in-the-middle attack.

We use honest agents A_1, A_2, A_3 and dishonest agent C (k = 3)

$$\begin{array}{ll} A_1 \to C : & \{A_1, C, A_3, \dots, A_k, N_{A_1}\}_{K_C} \\ C(A_1) \to A_2 : & \{A_1, A_2, A_3, \dots, A_k, N_{A_1}\}_{K_{A_2}} \\ A_2 \to A_1 : & \{N_{A_1}, N_{A_2}\}_{K_{A_1}} \\ A_1 \to C : & \{N_{A_2}\}_{K_C} \\ C(A_1) \to A_2 : & \{N_{A_2}\}_{K_{A_2}} \end{array}$$

The standard man-in-the-middle attack.

We use honest agents A_1, A_2, A_3 and dishonest agent C (k = 3)

$$A_{1} \to C : \{A_{1}, C, A_{3}, \dots, A_{k}, N_{A_{1}}\}_{K_{C}}$$

$$C(A_{1}) \to A_{2} : \{A_{1}, A_{2}, A_{3}, \dots, A_{k}, N_{A_{1}}\}_{K_{A_{2}}}$$

$$A_{2} \to A_{1} : \{N_{A_{1}}, N_{A_{2}}\}_{K_{A_{1}}}$$

$$A_{1} \to C : \{N_{A_{2}}\}_{K_{C}}$$

$$C(A_{1}) \to A_{2} : \{N_{A_{2}}\}_{K_{A_{2}}}$$

Using our rules, we get a protocol state of the form

 $Ha(a_1), Ha(a_2), Ha(a_3), Da(d),$

 $A_{1,2}(a_1, d, a_3, n, m), A_{2,2}(a_1, a_2, a_3, n, m), I(n), I(m), \dots$

Hence both security questions from the point of view of A_2 are violated.

Also, a protocol state containing $A_{2,2}(x_1, x_2, x_3, z, w)$ can be reached only if x_1, x_2, x_3 are mutually distinct.

The conditions $Ha(x_1)$, $Ha(x_2)$, $Ha(x_3)$ in the security property mean that these three agents should be honest.

Hence we require at least 3 honest agents for an attack.

In the absence of a dishonest agent, messages containing w known to the intruder always encrypted with public keys of honest agents.

Hence w can never be known to the intruder.

Hence an attack against the fourth security property requires at least 4 agents (k + 1 agents in general).

Sometimes certain special names can be used in protocol: e.g. servers.

These are not counted in the number of agents required for an attack.

 $A \rightarrow B : A, N_a$ $B \rightarrow S : B, \{A, N_a, N_b\}_{K_{bs}}$ $S \rightarrow A : \{B, K_{ab}, N_a, N_b\}_{K_{as}}, \{A, K_{ab}\}_{K_{bs}}$ $A \rightarrow B : \{A, K_{ab}\}_{K_{bs}}, \{N_b\}_{K_{ab}}$

This is the Yahalom protocol.

We use a special agent name server and the rule $\rightsquigarrow Agent(server)$

No rules of the form Ha(server) or Da(server).

No rules to state whether *server* is distinct from other agents.

Protocol rules may involve these special names.

 $Agent(x), Agent(y), Distinct(x, y) \rightsquigarrow A_0(x, y, server), B_0(x, y, server), \\S_0(x, y, server), Agent(x), Agent(y), Distinct(x, y)$

Security properties are of the form

 $Ha(x), Ha(y), A_2(x, y, server, z, u, v), I(v)$

In this example we have k = 2 (*server* is not counted).

An attack requires k + 1 = 3 agents besides the *server*.

Without the *Distinct* predicates, an attack requires 2 agents besides the *server*.

- Two agents suffice for detecting attacks when agents involved in a session need not all be distinct.
- Otherwise k + 1 agents suffice where k is the number of honest agents involved in the security property.
- The protocols must be independent of agent names.
- Security properties must be independent of agent names.
- Security properties must be reachability properties.
- Still this does not give us a method to check these security properties.

An example of protocol analysis 'by hand'

Our familiar ping-pong protocol

 $X \to Y$: $\{M, X\}_{K_Y}$ $Y \to X$: $\{M\}_{K_X}$

We need to show that the protocol is secure.

For simplicity we work with the following rules for intruder's knowledge. Intruder knows $E_B(i_A(M))$.

If intruder knows $E_Y(i_A(x))$ then intruder knows $E_X(x)$.

(Besides we have computation abilities of the intruder.)

For general protocols, we need to use multiset rewriting rules.

As usual we have two honest agents A, B and a dishonest agent C.

Idea: we look at the shape of messages that may be known to the intruder. Messages involved are of the form $w \cdot M$ where w is a string of symbols $E_A, E_B, E_C, i_A, i_B, i_C$.

E.g. the message $E_B(i_A(M))$ is written as $E_B \cdot i_A \cdot M$.

Claim: every message known to the intruder is of one of the following two forms

1. $w \cdot E_B \cdot i_A \cdot M$ for some string w

2. $w \cdot E_A \cdot M$ for some string w

The first message $E_B \cdot i_A \cdot M$ known to the intruder is clearly of this form. (Here w is the empty string.)

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$.

(1) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_B \cdot i_A \cdot M$ for some string w. Cases:

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (1) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_B \cdot i_A \cdot M$ for some string w. Cases:

• $|x| \ge 3$. Then x is of the form $w' \cdot E_B \cdot i_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_B \cdot i_A \cdot M$.

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (1) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_B \cdot i_A \cdot M$ for some string w. Cases:

- $|x| \ge 3$. Then x is of the form $w' \cdot E_B \cdot i_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_B \cdot i_A \cdot M$.
- |x| = 2. We must have $x = i_A \cdot M$ and $i_X = E_B$, which is impossible.

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (1) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_B \cdot i_A \cdot M$ for some string w. Cases:

- $|x| \ge 3$. Then x is of the form $w' \cdot E_B \cdot i_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_B \cdot i_A \cdot M$.
- |x| = 2. We must have $x = i_A \cdot M$ and $i_X = E_B$, which is impossible.
- |x| = 1. We have x = M, Y = B and X = A. The new message $E_X \cdot M = E_A \cdot M$ is of the required form.

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (1) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_B \cdot i_A \cdot M$ for some string w. Cases:

- $|x| \ge 3$. Then x is of the form $w' \cdot E_B \cdot i_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_B \cdot i_A \cdot M$.
- |x| = 2. We must have $x = i_A \cdot M$ and $i_X = E_B$, which is impossible.
- |x| = 1. We have x = M, Y = B and X = A. The new message $E_X \cdot M = E_A \cdot M$ is of the required form.
- |x| = 0. We must have $i_X = M$ which is impossible.

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$.

(2) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_A \cdot M$ for some string w.

Cases:

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (2) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_A \cdot M$ for some string w. Cases:

• $|x| \ge 2$. Then x is of the form $w' \cdot E_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_A \cdot M$.

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (2) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_A \cdot M$ for some string w. Cases:

- $|x| \ge 2$. Then x is of the form $w' \cdot E_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_A \cdot M$.
- |x| = 1. We must have x = M and $i_X = E_A$, which is impossible.

The intruder already knows $E_Y \cdot i_X \cdot x$ using which he learns $E_X \cdot x$. (2) Suppose $E_Y \cdot i_X \cdot x$ is of the form $w \cdot E_A \cdot M$ for some string w. Cases:

- $|x| \ge 2$. Then x is of the form $w' \cdot E_A \cdot M$ and $w = E_Y \cdot i_X \cdot w'$. Hence $E_X \cdot x$ is of the form $E_X \cdot w' \cdot E_A \cdot M$.
- |x| = 1. We must have x = M and $i_X = E_A$, which is impossible.
- |x| = 0. We must have $i_X = M$ which is impossible.

Finally we consider intruder computations. The intruder knows a message w_1 of the form

1. $w \cdot E_B \cdot i_A \cdot M$ for some string w

2. or $w \cdot E_A \cdot M$ for some string w

The intruder knows a message w_1 of the form

1. $w \cdot E_B \cdot i_A \cdot M$ for some string w

- 2. or $w \cdot E_A \cdot M$ for some string w
- If the intruder computes $E_X \cdot w_1$ or $i_X \cdot w_1$ (pushing a new symbol) then this new message is of the required form.

The intruder knows a message w_1 of the form

1. $w \cdot E_B \cdot i_A \cdot M$ for some string w

2. or $w \cdot E_A \cdot M$ for some string w

- If the intruder computes $E_X \cdot w_1$ or $i_X \cdot w_1$ (pushing a new symbol) then this new message is of the required form.
- Now suppose the intruder pops a symbol i_X . This is possible only if $w = i_X \cdot w'$. Hence the new message is of the required form.

The intruder knows a message w_1 of the form

1. $w \cdot E_B \cdot i_A \cdot M$ for some string w

2. or $w \cdot E_A \cdot M$ for some string w

- If the intruder computes $E_X \cdot w_1$ or $i_X \cdot w_1$ (pushing a new symbol) then this new message is of the required form.
- Now suppose the intruder pops a symbol i_X . This is possible only if $w = i_X \cdot w'$. Hence the new message is of the required form.
- Now suppose the intruder pops a symbol E_C . This is possible only if $w = E_C \cdot w'$. Hence the new message is of the required form.

The intruder knows a message w_1 of the form

1. $w \cdot E_B \cdot i_A \cdot M$ for some string w

2. or $w \cdot E_A \cdot M$ for some string w

- If the intruder computes $E_X \cdot w_1$ or $i_X \cdot w_1$ (pushing a new symbol) then this new message is of the required form.
- Now suppose the intruder pops a symbol i_X . This is possible only if $w = i_X \cdot w'$. Hence the new message is of the required form.
- Now suppose the intruder pops a symbol E_C . This is possible only if $w = E_C \cdot w'$. Hence the new message is of the required form.

Hence the protocol is secure :-)

Some Key Distribution Protocols

Diffie-Hellman secret-key exchange protocol

Due to Diffie and Hellman (1976).

Two parties A and B have no symmetric or asymmetric keys, and want to agree on a common key to be used for symmetric encryption.

Fix a prime number p.

$$\mathbb{Z}_p^* = \{ x \mid 0 < x < p, gcd(x, p) = 1 \}$$

As p is prime, $\mathbb{Z}_p^* = \{1, \ldots, p-1\}.$

For every prime p there is some $g\in \mathbb{Z}_p^*$ such that $\mathbb{Z}_p^*=\{g^0 \bmod p,\ldots,g^{p-2} \bmod p\}$

g is called the generator of \mathbb{Z}_p^* .

The protocol

The prime p and the generator g are known to everybody.

- A randomly chooses $0 \le N_a \le p-2$ and sends $X = g^{N_a} \mod p$ to B.
- B randomly chooses $0 \le N_b \le p-2$ and sends $Y = g^{N_b} \mod p$ to A.
- A computes Y^{N_a} as the secret key.
- B computes X^{N_b} as the secret key.

$$X^{N_b} = (g^{N_a})^{N_b} = g^{N_a N_b} = (g^{N_b})^{N_a} = Y^{N_a} \pmod{p}$$