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Excursion: some basic properties of numbers

gcd(a,b) (also written (a,b)) can be computed by the Euclid’s algorithm.
gcd (a,b) = ged (b,a mod b)

gcd(56,21)

= ged(21, 14) //14=1x56—2 x 21
= ged(14,7) [/ T=1x21—-1x14
— 7 // 14 mod 7=0

7T=1x21-1x14=1x21—-(1x56—-2x21)=—-1x56+3x 21

= gcd(a, b) is always of the form ma + nb for some m,n € Z



Hence if (a,b) = 1 then ma + nb = 1 for some m,n € Z.

Conversely suppose ma + nb = 1.

Let £ be a common divisor of a and b.

We have a = uk and b = vk.
Then 1 = ma + nb = k(mu + nv).

This is possible only if £ =1.

Conclusion: (a,b) = 1 if and only if ma + nb = 1 for some m,n € Z.



For any p € N, consider Z) = {z | 0 < x < p, (x,p) = 1}, and the
operation of multiplication modulo p.
Let x,y € Z,

We have mx +np =1 and m'y +n'p = 1.
mm'zy =1—np—n'p+nn'p

mm'zy + (n+n’ —nn'p)p=1

2

(xy,p) = 1. Hence (zy mod p,p) = 1.

Conclusion: if z,y € Z; then xy mod p € Z;.



For any p € N, consider Z) = {z | 0 < x < p, (x,p) = 1}, and the
operation of multiplication modulo p.
Let x,y € Z,

We have mx +np =1 and m'y +n'p = 1.
mm'zy =1—np—n'p+nn'p

mm'zy + (n+n’ —nn'p)p=1

2

(xy,p) = 1. Hence (zy mod p,p) = 1.

Conclusion: if z,y € Z; then xy mod p € Z;.

Also we have mx mod p = 1.

Conclusion: for every = € Z there is some 2~ € Z such that

rx~! mod p = 1.



Hence the set Z; with the operation of multiplication modulo p forms a

group, i.e. a set G with a binary operation X such that
1. ifz,yeGthenax xye G
2. associativity: (z X y) X z =2 X (y X 2)
3. identity element: there isan e € G suchthate x r =z X e =e.

4. inverse elements: for every x € G there is some ! € G such that

1

rxr t=rlxr=ec.



Hence the set Z; with the operation of multiplication modulo p forms a

group, i.e. a set G with a binary operation X such that
1. ifz,yeGthenax xye G
2. associativity: (z X y) X z =2 X (y X 2)
3. identity element: there isan e € G suchthate x r =z X e =e.

4. inverse elements: for every x € G there is some ! € G such that

1

rxr t=rlxr=ec.

In our case we have
G = Z;’;
x Xy =xy mod p

e =1



Examples of infinite groups

e integers with addition operation
r+0=0+zr=2x
r+ (—z)=0

e non-zero reals with multiplication operation
rXxl=1xzrx=2x
X () =1

Example of a finite group: Booleans with exclusive-or operation
rO0=00xr=x
r+x=0

Each element is its own inverse.

Observe: the group has 2 elements and also 22 = 0 for all z.



Another finite group Zf = {1,2,3,4}

2x2=4 2x3=1 2x4=3 3x3=4 3x4=2 4x4=1
We have 1=t =1 2-1 =3 371 =9 41 =4
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Another finite group Zf = {1,2,3,4}
2x2=4 2x3=1 2x4=3 3x3=4 3x4=2

We have 1=t =1 271 =3 371 =2
Also 20 =1 21 =2 22 =4
Hence 2 is a generator of the group.

Similarly 30 =1 3t =3 32 =4

Hence 3 is also a generator of the group.
o(b) = |Zt| =4 (The familiar Euler phi function)
Observe 14 =1 24 =1 3 =1

But also 4% = 1.

The set {1,4} is also a group wrt multiplication modulo 5.
Hence {1,4} is a subgroup of Zf and [{1,4}| = 2.

4 x4=1
4=1 =4
23 =3
3% =2
4* = 1



75 =4{1,3,5,7}
I3xXx3=1 3xb=7 3xT7T=5H Hxdb=1 HxXx7T=3 Tx7=1
We have 171 =1 371 =3 5 1=5 7l=17



75 =4{1,3,5,7}

Ix3=1 3xdH=7 3IXT7T=5H HXxo=1 dHXx7T=3 Tx7T=1
We have 11 =1 371 =3 51 =5 =7
Also 30 =1 31 =3 32 =1



75 =4{1,3,5,7}

3x3=1
We have
Also

Similarly
And

3XbHh=7 3xT7T=5H bxb=1 bHxT7T=

1-1=1 371 =3 S—
30 =1 31 =3
50 =1 5 =5
70 — 1 =7



75 =4{1,3,5,7}
3x3=1 3xb=7 3xT7T=5H 5HXdH=1 bHXT=

We have 17t =1 371 =3 51 =
Also 30 =1 3! =3
Similarly 50 =1 5t =5
And =1 =7
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75 =4{1,3,5,7}
3x3=1 3xb=7 3xT7T=5H 5HXdH=1 bHXT=

We have 1-t=1 371 =3 5—1 —
Also 30=1 3! =3
Similarly 50 =1 5t =5
And 70 =1 71—

¢(8) = |Zs| = 4

Observe 11 =1 3t =1 =1

But also 32 =52 =7> = 1.

The sets {1,3},{1,5},{1,7} are each groups wrt multiplication modulo 8.

Hence they are subgroups of Zg, each of order 2.



Consider a group GG wrt the operation Xx.

If S C G and S is also a group wrt the same operation X,
then S is called a subgroup of G.
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Consider a group GG wrt the operation Xx.

If S C G and S is also a group wrt the same operation X,
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Consider a group GG wrt the operation Xx.

If S C G and S is also a group wrt the same operation X,
then S is called a subgroup of G.

Fact: if S is a subgroup of a finite group G then |S| divides |G|.

Fact: if G is a finite group and z € G then z/¢! =

Hence if x € Z; then z?®) = 1
(mod p of course, but this is often left unwritten)

We used this for our discussion on RSA. Recall:
¢(p) = Zy =|{1,...,p—1}| =p—1 when p is prime.

o(pq) = Zy, = {1,...,pqg — 1} \{p.2p, ..., (¢ —1)p,q,2q,...,(p— 1)q}
=pqg—1—(p—1+qg—1)=(p—1)(¢— 1) when p and ¢ are distinct
primes.



Let G be a group and a € G.
Consider the set (a) = {da' |i € Z} C G.
(a® denotes a x a x a; a’ denotes ¢; a2 denotes (a™1)?)

Clearly (a) is a subgroup of G-
e Take any two elements a’ and o’ from {(a). Then o' x o/ = '™’ € (a).
e Associativity property holds already for the whole group G.
e c =da’ € (a).

e Take any element a’ € (a). Then we know that
a'xa'=(axa )Y =e¢=canda’ € {a). Alsoa™" x a' = e.

(a) is called the subgroup generated by a.
Further if (a) = G then a is called a generator of (G, and G is called a
cyclic group.



In case of the groups Z; we know that z?®) =1 for every x € L.
Hence it is unnecessary to consider negative powers.

p! = g 1gfW) = pop)-1 2= (xhH)* ...

Hence (z) = {2°, 2% 2% ...}
Also 2P = 20 p¢@+L — o1
Hence (z) = {20, 2!, 2% ..., 2%W~1}

For the group Z; = {1,2,3,4} we have

=11y @2=111,243r )=11,342r  {4) =114}
Z: is cyclic because it has generators 2 and 3.

7% is not cyclic: (3) = {1, 3}, (5) ={1,5}, (7) ={1,7}



*

In case of the groups Z; we know that z?®) =1 for every z € L.

Hence it is unnecessary to consider negative powers.
r! = g lpf) = o)L 2= (xhH)* ...
Hence (z) = {2°, 2% 2% ...}
Also 2P = 20 p¢@+L — o1
Hence (z) = {20, 2!, 2% ..., 2%W~1}

For the group Z; = {1,2,3,4} we have

<1> — {1} <2> — {17 27473} <3> — {173747 2} <4> — {174}
Zi is cyclic because it has generators 2 and 3.

7% is not cyclic: (3) = {1, 3}, (5) ={1,5}, (7) ={1,7}

Fact: Z; is cyclic for every prime p.



Back to the Diffie-Hellman secret key exchange
pis a prime and g is a generator of Z.

A and B choose randomly N, and N, respectively from {0,1,...,p — 2}
and exchange the messages g™V« and ¢'*¢.

The common key computed by both is g"e.

The exchanged messages and the common keys are all from the set Z7.

The recommended size of p is 512 bits or better 1024 bits.



Back to the Diffie-Hellman secret key exchange
pis a prime and g is a generator of Z.

A and B choose randomly N, and N, respectively from {0,1,...,p — 2}
and exchange the messages g™V« and ¢'*¢.

The common key computed by both is g"e.
The exchanged messages and the common keys are all from the set Z7.

The recommended size of p is 512 bits or better 1024 bits.

How secure is this protocol?



Important: this protocol should not be analyzed according to the usual

Dolev-Yao model.
E.g. suppose we model message x¥ as the term exp(z,y).

The key computed by A is then exp(exp(g, Ny), N,)
and that computed by B is exp(exp(g, N,), Np).

But in the Dolev-Yao model, distinct terms represent distinct messages.

Hence in the normal run of the protocol (without interference from the

attacker), the keys computed by A and B are not the same!

A possible solution: consider extensions of the Dolev-Yao model with

certain equations on terms, e.g. exp(exp(x,y),2) = explexp(x, 2),y) ...



The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and

computes a common key.
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computes a common key.

Another attack, A may send ¢"'« to B which is intercepted by C
who replies with his own message ¢'*.
A thinks he has a common key ¢”+"¢ with B

but actually the key is known to C'.



The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and

computes a common key.

Another attack, A may send ¢"'« to B which is intercepted by C
who replies with his own message ¢'*.

A thinks he has a common key ¢”+"¢ with B

but actually the key is known to C'.

The protocol is clearly insecure in the presence of an active attacker.

We now consider a passive adversary: one who spies on messages in the

network but does not modify them.



The passive adversary observes the messages ¢« and ¢'**.
Also the values p and g are public.

Can the intruder compute the common key ¢”+"* from them.
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a generator g of the group Z; and an element M € Z,
compute the unique x € {0,...,p — 2} such that ¢* mod p = M



The passive adversary observes the messages ¢« and ¢'**.
Also the values p and g are public.

Can the intruder compute the common key ¢”+"* from them.

A suggestion: from ¢”e the attacker computes N,, and from ¢™* he

computes N,. From these he can easily compute g¥«"o.

The discrete logarithm problem: given a prime p,
a generator g of the group Z; and an element M € Z,
compute the unique x € {0,...,p — 2} such that ¢* mod p = M

A naive algorithm: for each x € {0,...,p — 2} check whether
g* mod p= M.

The number of possibilities for x is exponential
in the binary representation of p.



One-way functions are functions f such that it is “easy” to compute f(x)
from x but “difficult” to compute x from f(x).

The function f where f(p, g,x) = ¢* mod p is believed to be one-way, but
no proof is known.

|.e. the discrete logarithm problem is believed to be difficult.

The Diffie-Hellman problem: Given ¢* and ¢¥ for some x,y chosen from
{0,...,p— 2}, compute g*Y.

The discrete logarithm problem is at least as difficult as the Diffie-Hellman
problem, i.e. solving the former allows one to solve the latter.

The converse is an open question: does solving the Diffie-Hellman problem
allow us to solve the discrete logarithm problem?

The Diffie-Hellman assumption: The Diffie-Hellman problem is difficult.



In fact it is unknown whether there are any one-way functions at all!

Some other functions which are believed to be one-way:
e Factoring. The function f(x,y) = zy is believed to be one-way.

e RSA. The function is f(x) = x° mod n where n = pq for
two primes p, g with (e, ¢(n)) = 1.
This is believed to be a trapdoor one-way function with secrets p, q:
knowledge of the secrets allows one to invert f, but inverting f is
difficult otherwise.
The best known algorithm for inverting f is to factor V.



In fact it is unknown whether there are any one-way functions at all!

Some other functions which are believed to be one-way:
e Factoring. The function f(x,y) = zy is believed to be one-way.

e RSA. The function is f(x) = x° mod n where n = pq for
two primes p, g with (e, ¢(n)) = 1.
This is believed to be a trapdoor one-way function with secrets p, q:
knowledge of the secrets allows one to invert f, but inverting f is
difficult otherwise.
The best known algorithm for inverting f is to factor V.

Summary: The Diffie-Hellman secret key exchange protocol is secure

in the presence of a passive attacker (under the DH assumption)



Key distribution in the two-party
symmetric key model

The two parties already share a (symmetric) long-lived key and want to
compute a common symmetric key for a session.

No trusted third party is involved.

Possible motivations:
— prevent over-exposure of and repeated access to the long lived key.

— another motivation, especially in the asymmetric key model (where the
long lived keys are asymmetric), is that symmetric key cryptography is

much more efficient.



A message authentication scheme consists of a tagging algorithm 7 and a

verification algorithm )/ .

Given a message m and a key K we can compute the tag

= TK(m)
A person knowing m and K can then verify the tag.
b= VK(m, t)

We require the property
VK(m,TK(m)) =1

Security requirement: it is difficult for an attacker to forge a pair m, ¢
such that Vg (m,t) = 1.

|.e. the attacker tries to produce a tag for a new message after having
observed some tags of other messages.



The AKEP1 protocol (Authenticated Key Exchange Protocol 1)

A and B share a long-lived key K¢, for symmetric encryption and a
long-lived key K7 for message authentication.

A—B: AN,
B— A: No{k}ie,, Tin (B, A, No, Ny, {k}ice, )
A — B TK(ZL)(<A’ Nb>)

N, and N, are nonces generated by A and B respectively.
k is the session key (nonce) generated by B.

A and B first verify that the respective tags they received are correct,
before accepting the session key.



Informal analysis.
A—B: AN,
B— A: Ny{k}re ,Txm((B, A, Na, Ny, {k}ke )
A— B: Tgm((A,Np))

From point of view of A:

If A and B are honest then K¢, and K} are known only to A and B.
Hence the encryption {k} e must have been performed by B.

The tag he receives must have been created by B. Hence the encryption

{k} e, was performed by B in response to the nonce N, that he sent.

From point of view of B: the tag he receives ensures that the tag in the

second step was accepted by A.



The two-party asymmetric model

A digital signature scheme consists of a signing algorithm & and a

verification algorithm )/ .

Given message m and private key { ! we can compute the signature

s=SK ", m)
A person knowing m and K can then verify the signature.
b=V(K,m,s)

We require the property
V(K,m,s)=1if and only if s = S(K !, m)

Security requirement: it is difficult for an attacker to forge a pair m, s
such that V(K,m,s) = 1.



The protocol

Each user A has public keys K¢ and K¢ for encryption and signature
schemes respectively. The corresponding private keys are K¢~ ' and Kff_l.
These are long-lived keys. The symmetric session key k Is created as:

A—B: AN,
B—A: Ny {k}r:,S(KE (B, A Ny, Ny, {k} ke )
A— B: S(KCCLZ_17<A7N5>)



The protocol

Each user A has public keys K¢ and K¢ for encryption and signature
schemes respectively. The corresponding private keys are K¢~ ' and Kff_l.
These are long-lived keys. The symmetric session key k Is created as:

A—B: AN,
B— A: Ny {k}re, S(K{ ', (B, A, Noy Ny, {k}e,))
A= B: S(KY ' (A N,))
Compare with the Needham-Schroeder public key protocol
A— B: {A Nu}xe
B— A: {Ng, Np}rke
A— B: {Np}xe

There B has no guarantee about who created the first and third messages.



