Excursion: some basic properties of numbers

$$
\operatorname{gcd}(a, b) \text { (also written }(a, b)) \text { can be computed by the Euclid's algorithm. }
$$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

$\operatorname{gcd}(56,21)$

$$
\begin{array}{ll}
=\operatorname{gcd}(21,14) & \\
=\operatorname{gcd}(14,7) & \\
=7 & \\
=7 & / / 14=1 \times 56-2 \times 21 \\
\bmod 7=0
\end{array}
$$

Excursion: some basic properties of numbers

$\operatorname{gcd}(a, b)$ (also written $(a, b))$ can be computed by the Euclid's algorithm. $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$
$\operatorname{gcd}(56,21)$

$$
\begin{array}{ll}
=\operatorname{gcd}(21,14) & \\
=\operatorname{lcd}(14,7) & \\
=7 & \\
=7 & \\
& / / 14=1 \times 5 \bmod 7=0
\end{array}
$$

$$
7=1 \times 21-1 \times 14=1 \times 21-(1 \times 56-2 \times 21)=-1 \times 56+3 \times 21
$$

Excursion: some basic properties of numbers

$\operatorname{gcd}(a, b)$ (also written $(a, b))$ can be computed by the Euclid's algorithm.

 $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$$\operatorname{gcd}(56,21)$
$=\operatorname{gcd}(21,14) \quad / / 14=1 \times 56-2 \times 21$
$=\operatorname{gcd}(14,7) \quad / / 7=1 \times 21-1 \times 14$
$=7$
$/ / 14 \bmod 7=0$
$7=1 \times 21-1 \times 14=1 \times 21-(1 \times 56-2 \times 21)=-1 \times 56+3 \times 21$
$\Rightarrow \operatorname{gcd}(a, b)$ is always of the form $m a+n b$ for some $m, n \in \mathbb{Z}$

Hence if $(a, b)=1$ then $m a+n b=1$ for some $m, n \in \mathbb{Z}$.

Conversely suppose $m a+n b=1$.
Let k be a common divisor of a and b.
We have $a=u k$ and $b=v k$.
Then $1=m a+n b=k(m u+n v)$.
This is possible only if $k=1$.

Conclusion: $(a, b)=1$ if and only if $m a+n b=1$ for some $m, n \in \mathbb{Z}$.

For any $p \in \mathbb{N}$, consider $\mathbb{Z}_{p}^{*}=\{x \mid 0<x<p,(x, p)=1\}$, and the operation of multiplication modulo p.

Let $x, y \in \mathbb{Z}_{p}^{*}$.
We have $m x+n p=1$ and $m^{\prime} y+n^{\prime} p=1$.

$$
\begin{aligned}
& m m^{\prime} x y=1-n p-n^{\prime} p+n n^{\prime} p^{2} \\
& m m^{\prime} x y+\left(n+n^{\prime}-n n^{\prime} p\right) p=1
\end{aligned}
$$

$(x y, p)=1$. Hence $(x y \bmod p, p)=1$.
Conclusion: if $x, y \in \mathbb{Z}_{p}^{*}$ then $x y \bmod p \in \mathbb{Z}_{p}^{*}$.

For any $p \in \mathbb{N}$, consider $\mathbb{Z}_{p}^{*}=\{x \mid 0<x<p,(x, p)=1\}$, and the operation of multiplication modulo p.

Let $x, y \in \mathbb{Z}_{p}^{*}$.
We have $m x+n p=1$ and $m^{\prime} y+n^{\prime} p=1$.

$$
\begin{aligned}
& m m^{\prime} x y=1-n p-n^{\prime} p+n n^{\prime} p^{2} \\
& m m^{\prime} x y+\left(n+n^{\prime}-n n^{\prime} p\right) p=1
\end{aligned}
$$

$(x y, p)=1$. Hence $(x y \bmod p, p)=1$.
Conclusion: if $x, y \in \mathbb{Z}_{p}^{*}$ then $x y \bmod p \in \mathbb{Z}_{p}^{*}$.
Also we have $m x \bmod p=1$.
Conclusion: for every $x \in \mathbb{Z}_{p}^{*}$ there is some $x^{-1} \in \mathbb{Z}_{p}^{*}$ such that $x x^{-1} \bmod p=1$.

Hence the set \mathbb{Z}_{p}^{*} with the operation of multiplication modulo p forms a group, i.e. a set G with a binary operation \times such that

1. if $x, y \in G$ then $x \times y \in G$
2. associativity: $(x \times y) \times z=x \times(y \times z)$
3. identity element: there is an $e \in G$ such that $e \times x=x \times e=e$.
4. inverse elements: for every $x \in G$ there is some $x^{-1} \in G$ such that $x \times x^{-1}=x^{-1} \times x=e$.

Hence the set \mathbb{Z}_{p}^{*} with the operation of multiplication modulo p forms a group, i.e. a set G with a binary operation \times such that

1. if $x, y \in G$ then $x \times y \in G$
2. associativity: $(x \times y) \times z=x \times(y \times z)$
3. identity element: there is an $e \in G$ such that $e \times x=x \times e=e$.
4. inverse elements: for every $x \in G$ there is some $x^{-1} \in G$ such that $x \times x^{-1}=x^{-1} \times x=e$.

In our case we have

$$
\begin{aligned}
G & \equiv \mathbb{Z}_{p}^{*} \\
x \times y & \equiv x y \bmod p \\
e & \equiv 1
\end{aligned}
$$

Examples of infinite groups

- integers with addition operation

$$
\begin{gathered}
x+0=0+x=x \\
x+(-x)=0
\end{gathered}
$$

- non-zero reals with multiplication operation

$$
\begin{gathered}
x \times 1=1 \times x=x \\
x \times\left(\frac{1}{x}\right)=1
\end{gathered}
$$

Example of a finite group: Booleans with exclusive-or operation

$$
\begin{gathered}
x \oplus 0=0 \oplus x=x \\
x+x=0
\end{gathered}
$$

Each element is its own inverse.
Observe: the group has 2 elements and also $x^{2}=0$ for all x.

Another finite group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$
$2 \times 2=4 \quad 2 \times 3=1 \quad 2 \times 4=3 \quad 3 \times 3=4 \quad 3 \times 4=2 \quad 4 \times 4=1$
We have $\quad 1^{-1}=1 \quad 2^{-1}=3 \quad 3^{-1}=2 \quad 4^{-1}=4$

Another finite group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$
$2 \times 2=4 \quad 2 \times 3=1 \quad 2 \times 4=3 \quad 3 \times 3=4 \quad 3 \times 4=2 \quad 4 \times 4=1$
We have $\quad 1^{-1}=1 \quad 2^{-1}=3 \quad 3^{-1}=2 \quad 4^{-1}=4$
Also
$2^{0}=1$
$2^{1}=2$
$2^{2}=4$
$2^{3}=3$
Hence 2 is a generator of the group.

Another finite group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$
$2 \times 2=4 \quad 2 \times 3=1 \quad 2 \times 4=3 \quad 3 \times 3=4 \quad 3 \times 4=2 \quad 4 \times 4=1$
We have
$1^{-1}=1$ $2^{-1}=3$
$3^{-1}=2$
$4^{-1}=4$
Also
$2^{0}=1$
$2^{1}=2$
$2^{2}=4$
$2^{3}=3$
Hence 2 is a generator of the group.
Similarly
$3^{0}=1$
$3^{1}=3$
$3^{2}=4$
$3^{3}=2$

Hence 3 is also a generator of the group.

Another finite group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$
$2 \times 2=4 \quad 2 \times 3=1 \quad 2 \times 4=3 \quad 3 \times 3=4 \quad 3 \times 4=2 \quad 4 \times 4=1$
We have
$1^{-1}=1$ $2^{-1}=3$
$3^{-1}=2$
$4^{-1}=4$
Also
$2^{0}=1$
$2^{1}=2$
$2^{2}=4$
$2^{3}=3$
Hence 2 is a generator of the group.
Similarly
$3^{0}=1$
$3^{1}=3$
$3^{2}=4$
$3^{3}=2$

Hence 3 is also a generator of the group.
$\phi(5)=\left|\mathbb{Z}_{5}^{*}\right|=4 \quad$ (The familiar Euler phi function)
Observe
$1^{4}=1$
$2^{4}=1$
$3^{4}=1$
$4^{4}=1$

Another finite group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$
$2 \times 2=4 \quad 2 \times 3=1 \quad 2 \times 4=3 \quad 3 \times 3=4 \quad 3 \times 4=2 \quad 4 \times 4=1$
We have

$$
1^{-1}=1
$$

$$
2^{-1}=3
$$

$$
3^{-1}=2
$$

$$
4^{-1}=4
$$

Also
$2^{0}=1$
$2^{1}=2$
$2^{2}=4$
$2^{3}=3$
Hence 2 is a generator of the group.
Similarly

$$
3^{0}=1
$$

$3^{1}=3$
$3^{2}=4$
$3^{3}=2$

Hence 3 is also a generator of the group.
$\phi(5)=\left|\mathbb{Z}_{5}^{*}\right|=4 \quad$ (The familiar Euler phi function)
Observe
$1^{4}=1$
$2^{4}=1$
$3^{4}=1$
$4^{4}=1$

But also $4^{2}=1$.
The set $\{1,4\}$ is also a group wrt multiplication modulo 5 .
Hence $\{1,4\}$ is a subgroup of \mathbb{Z}_{5}^{*} and $|\{1,4\}|=2$.

$$
\mathbb{Z}_{8}^{*}=\{1,3,5,7\}
$$

$3 \times 3=1 \quad 3 \times 5=7 \quad 3 \times 7=5 \quad 5 \times 5=1 \quad 5 \times 7=3 \quad 7 \times 7=1$
We have $\quad 1^{-1}=1 \quad 3^{-1}=3 \quad 5^{-1}=5 \quad 7^{-1}=7$
$\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$
$3 \times 3=1 \quad 3 \times 5=7 \quad 3 \times 7=5 \quad 5 \times 5=1 \quad 5 \times 7=3 \quad 7 \times 7=1$
We have $\quad 1^{-1}=1 \quad 3^{-1}=3 \quad 5^{-1}=5 \quad 7^{-1}=7$
Also
$3^{0}=1$
$3^{1}=3$
$3^{2}=1$
$\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$
$3 \times 3=1 \quad 3 \times 5=7 \quad 3 \times 7=5 \quad 5 \times 5=1 \quad 5 \times 7=3 \quad 7 \times 7=1$
We have

$$
1^{-1}=1 \quad 3^{-1}=3
$$

$$
5^{-1}=5
$$

$$
7^{-1}=7
$$

Also
$3^{0}=1$
$3^{1}=3$
$3^{2}=1$
Similarly
$5^{0}=1$
$5^{1}=5$
$5^{2}=1$
And
$7^{0}=1$
$7^{1}=7$
$7^{2}=1$
$\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$
$3 \times 3=1 \quad 3 \times 5=7 \quad 3 \times 7=5 \quad 5 \times 5=1 \quad 5 \times 7=3 \quad 7 \times 7=1$
We have

$$
1^{-1}=1 \quad 3^{-1}=3
$$

$$
5^{-1}=5
$$

$$
7^{-1}=7
$$

Also
$3^{0}=1$
$3^{1}=3$
$3^{2}=1$
Similarly
$5^{0}=1$
$5^{1}=5$
$5^{2}=1$
And
$7^{0}=1$
$7^{1}=7$
$7^{2}=1$
$\phi(8)=\left|\mathbb{Z}_{5}^{*}\right|=4$
Observe
$1^{4}=1$
$3^{4}=1$
$5^{4}=1$
$7^{4}=1$
$\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$
$3 \times 3=1 \quad 3 \times 5=7 \quad 3 \times 7=5 \quad 5 \times 5=1 \quad 5 \times 7=3 \quad 7 \times 7=1$
We have

$$
1^{-1}=1
$$

$$
3^{-1}=3
$$

$$
5^{-1}=5
$$

$$
7^{-1}=7
$$

Also

$$
3^{0}=1
$$

$$
3^{1}=3
$$

$$
3^{2}=1
$$

Similarly

$$
5^{0}=1
$$

$$
5^{1}=5
$$

$$
5^{2}=1
$$

And
$7^{0}=1$
$7^{1}=7$
$7^{2}=1$
$\phi(8)=\left|\mathbb{Z}_{5}^{*}\right|=4$
$\begin{array}{llll}\text { Observe } & 1^{4}=1 & 3^{4}=1 & 5^{4}=1\end{array} 7^{4}=1$
But also $3^{2}=5^{2}=7^{2}=1$.
The sets $\{1,3\},\{1,5\},\{1,7\}$ are each groups wrt multiplication modulo 8 . Hence they are subgroups of \mathbb{Z}_{8}^{*}, each of order 2.

Consider a group G wrt the operation \times.
If $S \subseteq G$ and S is also a group wrt the same operation \times, then S is called a subgroup of G.

Consider a group G wrt the operation \times.
If $S \subseteq G$ and S is also a group wrt the same operation \times, then S is called a subgroup of G.
Fact: if S is a subgroup of a finite group G then $|S|$ divides $|G|$.

Consider a group G wrt the operation \times.
If $S \subseteq G$ and S is also a group wrt the same operation \times, then S is called a subgroup of G.
Fact: if S is a subgroup of a finite group G then $|S|$ divides $|G|$.
Fact: if G is a finite group and $x \in G$ then $x^{|G|}=e$.

Consider a group G wrt the operation \times.
If $S \subseteq G$ and S is also a group wrt the same operation \times, then S is called a subgroup of G.

Fact: if S is a subgroup of a finite group G then $|S|$ divides $|G|$.
Fact: if G is a finite group and $x \in G$ then $x^{|G|}=e$.
Hence if $x \in \mathbb{Z}_{p}^{*}$ then $x^{\phi(p)}=1$
(mod p of course, but this is often left unwritten)
We used this for our discussion on RSA. Recall:
$\phi(p)=\mathbb{Z}_{p}^{*}=|\{1, \ldots, p-1\}|=p-1$ when p is prime.
$\phi(p q)=\mathbb{Z}_{p q}^{*}=|\{1, \ldots, p q-1\} \backslash\{p, 2 p, \ldots,(q-1) p, q, 2 q, \ldots,(p-1) q\}|$
$=p q-1-(p-1+q-1)=(p-1)(q-1)$ when p and q are distinct primes.

Let G be a group and $a \in G$.
Consider the set $\langle a\rangle=\left\{a^{i} \mid i \in \mathbb{Z}\right\} \subseteq G$.
(a^{3} denotes $a \times a \times a ; a^{0}$ denotes $e ; a^{-3}$ denotes $\left(a^{-1}\right)^{3}$)
Clearly $\langle a\rangle$ is a subgroup of G :

- Take any two elements a^{i} and a^{j} from $\langle a\rangle$. Then $a^{i} \times a^{j}=a^{i+j} \in\langle a\rangle$.
- Associativity property holds already for the whole group G.
- $e=a^{0} \in\langle a\rangle$.
- Take any element $a^{i} \in\langle a\rangle$. Then we know that $a^{i} \times a^{-i}=\left(a \times a^{-1}\right)^{i}=e^{i}=e$ and $a^{-i} \in\langle a\rangle$. Also $a^{-i} \times a^{i}=e$.
$\langle a\rangle$ is called the subgroup generated by a.
Further if $\langle a\rangle=G$ then a is called a generator of G, and G is called a cyclic group.

In case of the groups \mathbb{Z}_{p}^{*} we know that $x^{\phi(p)}=1$ for every $x \in \mathbb{Z}_{p}^{*}$. Hence it is unnecessary to consider negative powers.
$x^{-1}=x^{-1} x^{\phi(p)}=x^{\phi(p)-1}, \quad x^{-2}=\left(x^{-1}\right)^{2} \ldots$.
Hence $\langle x\rangle=\left\{x^{0}, x^{1}, x^{2} \ldots\right\}$
Also $x^{\phi(p)}=x^{0}, \quad x^{\phi(p)+1}=x^{1} \ldots$
Hence $\langle x\rangle=\left\{x^{0}, x^{1}, x^{2} \ldots, x^{\phi(p)-1}\right\}$
For the group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$ we have
$\langle 1\rangle=\{1\}$
$\langle 2\rangle=\{1,2,4,3\}$
$\langle 3\rangle=\{1,3,4,2\}$
$\langle 4\rangle=\{1,4\}$
\mathbb{Z}_{5}^{*} is cyclic because it has generators 2 and 3 .
\mathbb{Z}_{8}^{*} is not cyclic: $\langle 3\rangle=\{1,3\}$,
$\langle 5\rangle=\{1,5\}$,
$\langle 7\rangle=\{1,7\}$

In case of the groups \mathbb{Z}_{p}^{*} we know that $x^{\phi(p)}=1$ for every $x \in \mathbb{Z}_{p}^{*}$. Hence it is unnecessary to consider negative powers.
$x^{-1}=x^{-1} x^{\phi(p)}=x^{\phi(p)-1}, \quad x^{-2}=\left(x^{-1}\right)^{2} \ldots$.
Hence $\langle x\rangle=\left\{x^{0}, x^{1}, x^{2} \ldots\right\}$
Also $x^{\phi(p)}=x^{0}, \quad x^{\phi(p)+1}=x^{1} \ldots$
Hence $\langle x\rangle=\left\{x^{0}, x^{1}, x^{2} \ldots, x^{\phi(p)-1}\right\}$
For the group $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$ we have
$\langle 1\rangle=\{1\}$
$\langle 2\rangle=\{1,2,4,3\}$
$\langle 3\rangle=\{1,3,4,2\}$
$\langle 4\rangle=\{1,4\}$
\mathbb{Z}_{5}^{*} is cyclic because it has generators 2 and 3 .
\mathbb{Z}_{8}^{*} is not cyclic: $\langle 3\rangle=\{1,3\}$,
$\langle 5\rangle=\{1,5\}$,
$\langle 7\rangle=\{1,7\}$

Fact: \mathbb{Z}_{p}^{*} is cyclic for every prime p.

Back to the Diffie-Hellman secret key exchange

p is a prime and g is a generator of \mathbb{Z}_{p}^{*}.
A and B choose randomly N_{a} and N_{b} respectively from $\{0,1, \ldots, p-2\}$ and exchange the messages $g^{N_{a}}$ and $g^{N_{b}}$.

The common key computed by both is $g^{N_{a} N_{b}}$.

The exchanged messages and the common keys are all from the set \mathbb{Z}_{p}^{*}.

The recommended size of p is 512 bits or better 1024 bits.

Back to the Diffie-Hellman secret key exchange

p is a prime and g is a generator of \mathbb{Z}_{p}^{*}.
A and B choose randomly N_{a} and N_{b} respectively from $\{0,1, \ldots, p-2\}$ and exchange the messages $g^{N_{a}}$ and $g^{N_{b}}$.

The common key computed by both is $g^{N_{a} N_{b}}$.

The exchanged messages and the common keys are all from the set \mathbb{Z}_{p}^{*}.
The recommended size of p is 512 bits or better 1024 bits.

How secure is this protocol?

Important: this protocol should not be analyzed according to the usual Dolev-Yao model.
E.g. suppose we model message x^{y} as the term $\exp (x, y)$.

The key computed by A is then $\exp \left(\exp \left(g, N_{b}\right), N_{a}\right)$ and that computed by B is $\exp \left(\exp \left(g, N_{a}\right), N_{b}\right)$.

But in the Dolev-Yao model, distinct terms represent distinct messages.
Hence in the normal run of the protocol (without interference from the attacker), the keys computed by A and B are not the same!

A possible solution: consider extensions of the Dolev-Yao model with certain equations on terms, e.g. $\exp (\exp (x, y), z)=\exp (\exp (x, z), y) \ldots$

The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and computes a common key.

The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and computes a common key.

Another attack, A may send $g^{N_{a}}$ to B which is intercepted by C who replies with his own message $g^{N_{c}}$.
A thinks he has a common key $g^{N_{a} N_{c}}$ with B but actually the key is known to C.

The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and computes a common key.

Another attack, A may send $g^{N_{a}}$ to B which is intercepted by C who replies with his own message $g^{N_{c}}$.
A thinks he has a common key $g^{N_{a} N_{c}}$ with B but actually the key is known to C.

The protocol is clearly insecure in the presence of an active attacker.
We now consider a passive adversary: one who spies on messages in the network but does not modify them.

The passive adversary observes the messages $g^{N_{a}}$ and $g^{N_{b}}$. Also the values p and g are public.

Can the intruder compute the common key $g^{N_{a} N_{b}}$ from them.

The passive adversary observes the messages $g^{N_{a}}$ and $g^{N_{b}}$. Also the values p and g are public.

Can the intruder compute the common key $g^{N_{a} N_{b}}$ from them.
A suggestion: from $g^{N_{a}}$ the attacker computes N_{a}, and from $g^{N_{b}}$ he computes N_{b}. From these he can easily compute $g^{N_{a} N_{b}}$.

The passive adversary observes the messages $g^{N_{a}}$ and $g^{N_{b}}$. Also the values p and g are public.

Can the intruder compute the common key $g^{N_{a} N_{b}}$ from them.
A suggestion: from $g^{N_{a}}$ the attacker computes N_{a}, and from $g^{N_{b}}$ he computes N_{b}. From these he can easily compute $g^{N_{a} N_{b}}$.

The discrete logarithm problem: given a prime p, a generator g of the group \mathbb{Z}_{p}^{*} and an element $M \in \mathbb{Z}_{p}^{*}$, compute the unique $x \in\{0, \ldots, p-2\}$ such that $g^{x} \bmod p=M$

The passive adversary observes the messages $g^{N_{a}}$ and $g^{N_{b}}$. Also the values p and g are public.

Can the intruder compute the common key $g^{N_{a} N_{b}}$ from them.
A suggestion: from $g^{N_{a}}$ the attacker computes N_{a}, and from $g^{N_{b}}$ he computes N_{b}. From these he can easily compute $g^{N_{a} N_{b}}$.

The discrete logarithm problem: given a prime p, a generator g of the group \mathbb{Z}_{p}^{*} and an element $M \in \mathbb{Z}_{p}^{*}$, compute the unique $x \in\{0, \ldots, p-2\}$ such that $g^{x} \bmod p=M$

A naive algorithm: for each $x \in\{0, \ldots, p-2\}$ check whether $g^{x} \bmod p=M$.

The number of possibilities for x is exponential in the binary representation of p.

One-way functions are functions f such that it is "easy" to compute $f(x)$ from x but "difficult" to compute x from $f(x)$.

The function f where $f(p, g, x)=g^{x} \bmod p$ is believed to be one-way, but no proof is known.
I.e. the discrete logarithm problem is believed to be difficult.

The Diffie-Hellman problem: Given g^{x} and g^{y} for some x, y chosen from $\{0, \ldots, p-2\}$, compute $g^{x y}$.
The discrete logarithm problem is at least as difficult as the Diffie-Hellman problem, i.e. solving the former allows one to solve the latter.

The converse is an open question: does solving the Diffie-Hellman problem allow us to solve the discrete logarithm problem?
The Diffie-Hellman assumption: The Diffie-Hellman problem is difficult.

In fact it is unknown whether there are any one-way functions at all!
Some other functions which are believed to be one-way:

- Factoring. The function $f(x, y)=x y$ is believed to be one-way.
- RSA. The function is $f(x)=x^{e} \bmod n$ where $n=p q$ for two primes p, q with $(e, \phi(n))=1$.
This is believed to be a trapdoor one-way function with secrets p, q : knowledge of the secrets allows one to invert f, but inverting f is difficult otherwise.
The best known algorithm for inverting f is to factor N.

In fact it is unknown whether there are any one-way functions at all!
Some other functions which are believed to be one-way:

- Factoring. The function $f(x, y)=x y$ is believed to be one-way.
- RSA. The function is $f(x)=x^{e} \bmod n$ where $n=p q$ for two primes p, q with $(e, \phi(n))=1$.
This is believed to be a trapdoor one-way function with secrets p, q : knowledge of the secrets allows one to invert f, but inverting f is difficult otherwise.
The best known algorithm for inverting f is to factor N.

Summary: The Diffie-Hellman secret key exchange protocol is secure in the presence of a passive attacker (under the DH assumption)

Key distribution in the two-party symmetric key model

The two parties already share a (symmetric) long-lived key and want to compute a common symmetric key for a session.

No trusted third party is involved.

Possible motivations:

- prevent over-exposure of and repeated access to the long lived key.
- another motivation, especially in the asymmetric key model (where the long lived keys are asymmetric), is that symmetric key cryptography is much more efficient.

A message authentication scheme consists of a tagging algorithm \mathcal{T} and a verification algorithm \mathcal{V}.

Given a message m and a key K we can compute the tag

$$
t=\mathcal{T}_{K}(m)
$$

A person knowing m and K can then verify the tag.

$$
b=\mathcal{V}_{K}(m, t)
$$

We require the property

$$
\mathcal{V}_{K}\left(m, \mathcal{T}_{K}(m)\right)=1
$$

Security requirement: it is difficult for an attacker to forge a pair m, t such that $\mathcal{V}_{K}(m, t)=1$.
I.e. the attacker tries to produce a tag for a new message after having observed some tags of other messages.

The AKEP1 protocol (Authenticated Key Exchange Protocol 1)

A and B share a long-lived key $K_{a b}^{e}$ for symmetric encryption and a long-lived key $K_{a b}^{m}$ for message authentication.

$$
\begin{array}{ll}
A \rightarrow B: & A, N_{a} \\
B \rightarrow A: & N_{b},\{k\}_{K_{a b}^{e}}, \mathcal{T}_{K_{a b}^{m}}\left(\left\langle B, A, N_{a}, N_{b},\{k\}_{K_{a b}^{e}}\right\rangle\right) \\
A \rightarrow B: & \mathcal{T}_{K_{a b}^{m}}\left(\left\langle A, N_{b}\right\rangle\right)
\end{array}
$$

N_{a} and N_{b} are nonces generated by A and B respectively.
k is the session key (nonce) generated by B.
A and B first verify that the respective tags they received are correct, before accepting the session key.

Informal analysis.

$$
\begin{array}{ll}
A \rightarrow B: & A, N_{a} \\
B \rightarrow A: & N_{b},\{k\}_{K_{a b}^{e}}, \mathcal{T}_{K_{a b}^{m}}\left(\left\langle B, A, N_{a}, N_{b},\{k\}_{K_{a b}^{e}}\right\rangle\right) \\
A \rightarrow B: & \mathcal{T}_{K_{a b}^{m}}\left(\left\langle A, N_{b}\right\rangle\right)
\end{array}
$$

From point of view of A :
If A and B are honest then $K_{a b}^{e}$ and $K_{a b}^{m}$ are known only to A and B. Hence the encryption $\{k\}_{K_{a b}^{e}}$ must have been performed by B.
The tag he receives must have been created by B. Hence the encryption $\{k\}_{K_{a b}^{e}}$ was performed by B in response to the nonce N_{a} that he sent.

From point of view of B : the tag he receives ensures that the tag in the second step was accepted by A.

The two-party asymmetric model

A digital signature scheme consists of a signing algorithm \mathcal{S} and a verification algorithm \mathcal{V}.

Given message m and private key K^{-1} we can compute the signature

$$
\left.s=\mathcal{S}_{(} K^{-1}, m\right)
$$

A person knowing m and K can then verify the signature.

$$
b=\mathcal{V}(K, m, s)
$$

We require the property

$$
\mathcal{V}(K, m, s)=1 \text { if and only if } s=\mathcal{S}\left(K^{-1}, m\right)
$$

Security requirement: it is difficult for an attacker to forge a pair m, s such that $\mathcal{V}(K, m, s)=1$.

The protocol

Each user A has public keys K_{a}^{e} and K_{a}^{d} for encryption and signature schemes respectively. The corresponding private keys are K_{a}^{e-1} and $K_{a}^{d^{-1}}$. These are long-lived keys. The symmetric session key k is created as:

$$
\begin{array}{ll}
A \rightarrow B: & A, N_{a} \\
B \rightarrow A: & N_{b},\{k\}_{K_{a}^{e}}, \mathcal{S}\left(K_{b}^{d^{-1}},\left\langle B, A, N_{a}, N_{b},\{k\}_{K_{a b}^{e}}\right\rangle\right) \\
A \rightarrow B: & \mathcal{S}\left(K_{a}^{d^{-1}},\left\langle A, N_{b}\right\rangle\right)
\end{array}
$$

The protocol

Each user A has public keys K_{a}^{e} and K_{a}^{d} for encryption and signature schemes respectively. The corresponding private keys are K_{a}^{e-1} and $K_{a}^{d^{-1}}$. These are long-lived keys. The symmetric session key k is created as:

$$
\begin{array}{ll}
A \rightarrow B: & A, N_{a} \\
B \rightarrow A: & N_{b},\{k\}_{K_{a}^{e}}, \mathcal{S}\left(K_{b}^{d^{-1}},\left\langle B, A, N_{a}, N_{b},\{k\}_{K_{a b}^{e}}\right\rangle\right) \\
A \rightarrow B: & \mathcal{S}\left(K_{a}^{d^{-1}},\left\langle A, N_{b}\right\rangle\right)
\end{array}
$$

Compare with the Needham-Schroeder public key protocol

$$
\begin{array}{ll}
A \longrightarrow B: & \left\{A, N_{a}\right\}_{K_{b}^{e}} \\
B \longrightarrow A: & \left\{N_{a}, N_{b}\right\}_{K_{a}^{e}} \\
A \longrightarrow B: & \left\{N_{b}\right\}_{K_{b}^{e}}
\end{array}
$$

There B has no guarantee about who created the first and third messages.

