
Excursion: some basic properties of numbers

gcd(a, b) (also written (a, b)) can be computed by the Euclid’s algorithm.

gcd (a,b) = gcd (b,a mod b)

gcd(56, 21)

= gcd(21, 14) // 14 = 1× 56− 2× 21

= gcd(14, 7) // 7 = 1× 21− 1× 14

= 7 // 14 mod 7 = 0

7 = 1× 21− 1× 14 = 1× 21− (1× 56− 2× 21) = −1× 56 + 3× 21

⇒ gcd(a, b) is always of the form ma + nb for some m,n ∈ Z

Excursion: some basic properties of numbers

gcd(a, b) (also written (a, b)) can be computed by the Euclid’s algorithm.

gcd (a,b) = gcd (b,a mod b)

gcd(56, 21)

= gcd(21, 14) // 14 = 1× 56− 2× 21

= gcd(14, 7) // 7 = 1× 21− 1× 14

= 7 // 14 mod 7 = 0

7 = 1× 21− 1× 14 = 1× 21− (1× 56− 2× 21) = −1× 56 + 3× 21

⇒ gcd(a, b) is always of the form ma + nb for some m,n ∈ Z

Excursion: some basic properties of numbers

gcd(a, b) (also written (a, b)) can be computed by the Euclid’s algorithm.

gcd (a,b) = gcd (b,a mod b)

gcd(56, 21)

= gcd(21, 14) // 14 = 1× 56− 2× 21

= gcd(14, 7) // 7 = 1× 21− 1× 14

= 7 // 14 mod 7 = 0

7 = 1× 21− 1× 14 = 1× 21− (1× 56− 2× 21) = −1× 56 + 3× 21

⇒ gcd(a, b) is always of the form ma + nb for some m,n ∈ Z

Hence if (a, b) = 1 then ma + nb = 1 for some m,n ∈ Z.

Conversely suppose ma + nb = 1.

Let k be a common divisor of a and b.

We have a = uk and b = vk.

Then 1 = ma + nb = k(mu + nv).

This is possible only if k = 1.

Conclusion: (a, b) = 1 if and only if ma + nb = 1 for some m,n ∈ Z.

For any p ∈ N, consider Z
∗
p = {x | 0 < x < p, (x, p) = 1}, and the

operation of multiplication modulo p.

Let x, y ∈ Z
∗
p.

We have mx + np = 1 and m′y + n′p = 1.

mm′xy = 1− np− n′p + nn′p2

mm′xy + (n + n′ − nn′p)p = 1

(xy, p) = 1. Hence (xy mod p, p) = 1.

Conclusion: if x, y ∈ Z
∗
p then xy mod p ∈ Z

∗
p.

Also we have mx mod p = 1.

Conclusion: for every x ∈ Z
∗
p there is some x−1 ∈ Z

∗
p such that

xx−1 mod p = 1.

For any p ∈ N, consider Z
∗
p = {x | 0 < x < p, (x, p) = 1}, and the

operation of multiplication modulo p.

Let x, y ∈ Z
∗
p.

We have mx + np = 1 and m′y + n′p = 1.

mm′xy = 1− np− n′p + nn′p2

mm′xy + (n + n′ − nn′p)p = 1

(xy, p) = 1. Hence (xy mod p, p) = 1.

Conclusion: if x, y ∈ Z
∗
p then xy mod p ∈ Z

∗
p.

Also we have mx mod p = 1.

Conclusion: for every x ∈ Z
∗
p there is some x−1 ∈ Z

∗
p such that

xx−1 mod p = 1.

Hence the set Z
∗
p with the operation of multiplication modulo p forms a

group, i.e. a set G with a binary operation × such that

1. if x, y ∈ G then x× y ∈ G

2. associativity: (x× y)× z = x× (y × z)

3. identity element: there is an e ∈ G such that e× x = x× e = e.

4. inverse elements: for every x ∈ G there is some x−1 ∈ G such that

x× x−1 = x−1 × x = e.

In our case we have

G ≡ Z
∗
p

x× y ≡ xy mod p

e ≡ 1

Hence the set Z
∗
p with the operation of multiplication modulo p forms a

group, i.e. a set G with a binary operation × such that

1. if x, y ∈ G then x× y ∈ G

2. associativity: (x× y)× z = x× (y × z)

3. identity element: there is an e ∈ G such that e× x = x× e = e.

4. inverse elements: for every x ∈ G there is some x−1 ∈ G such that

x× x−1 = x−1 × x = e.

In our case we have

G ≡ Z
∗
p

x× y ≡ xy mod p

e ≡ 1

Examples of infinite groups

• integers with addition operation

x + 0 = 0 + x = x

x + (−x) = 0

• non-zero reals with multiplication operation

x× 1 = 1× x = x

x× (1
x
) = 1

Example of a finite group: Booleans with exclusive-or operation

x⊕ 0 = 0⊕ x = x

x + x = 0

Each element is its own inverse.

Observe: the group has 2 elements and also x2 = 0 for all x.

Another finite group Z
∗
5 = {1, 2, 3, 4}

2× 2 = 4 2× 3 = 1 2× 4 = 3 3× 3 = 4 3× 4 = 2 4× 4 = 1

We have 1−1 = 1 2−1 = 3 3−1 = 2 4−1 = 4

Also 20 = 1 21 = 2 22 = 4 23 = 3

Hence 2 is a generator of the group.

Similarly 30 = 1 31 = 3 32 = 4 33 = 2

Hence 3 is also a generator of the group.

φ(5) = |Z∗
5| = 4 (The familiar Euler phi function)

Observe 14 = 1 24 = 1 34 = 1 44 = 1

But also 42 = 1.

The set {1, 4} is also a group wrt multiplication modulo 5.

Hence {1, 4} is a subgroup of Z
∗
5 and |{1, 4}| = 2.

Another finite group Z
∗
5 = {1, 2, 3, 4}

2× 2 = 4 2× 3 = 1 2× 4 = 3 3× 3 = 4 3× 4 = 2 4× 4 = 1

We have 1−1 = 1 2−1 = 3 3−1 = 2 4−1 = 4

Also 20 = 1 21 = 2 22 = 4 23 = 3

Hence 2 is a generator of the group.

Similarly 30 = 1 31 = 3 32 = 4 33 = 2

Hence 3 is also a generator of the group.

φ(5) = |Z∗
5| = 4 (The familiar Euler phi function)

Observe 14 = 1 24 = 1 34 = 1 44 = 1

But also 42 = 1.

The set {1, 4} is also a group wrt multiplication modulo 5.

Hence {1, 4} is a subgroup of Z
∗
5 and |{1, 4}| = 2.

Another finite group Z
∗
5 = {1, 2, 3, 4}

2× 2 = 4 2× 3 = 1 2× 4 = 3 3× 3 = 4 3× 4 = 2 4× 4 = 1

We have 1−1 = 1 2−1 = 3 3−1 = 2 4−1 = 4

Also 20 = 1 21 = 2 22 = 4 23 = 3

Hence 2 is a generator of the group.

Similarly 30 = 1 31 = 3 32 = 4 33 = 2

Hence 3 is also a generator of the group.

φ(5) = |Z∗
5| = 4 (The familiar Euler phi function)

Observe 14 = 1 24 = 1 34 = 1 44 = 1

But also 42 = 1.

The set {1, 4} is also a group wrt multiplication modulo 5.

Hence {1, 4} is a subgroup of Z
∗
5 and |{1, 4}| = 2.

Another finite group Z
∗
5 = {1, 2, 3, 4}

2× 2 = 4 2× 3 = 1 2× 4 = 3 3× 3 = 4 3× 4 = 2 4× 4 = 1

We have 1−1 = 1 2−1 = 3 3−1 = 2 4−1 = 4

Also 20 = 1 21 = 2 22 = 4 23 = 3

Hence 2 is a generator of the group.

Similarly 30 = 1 31 = 3 32 = 4 33 = 2

Hence 3 is also a generator of the group.

φ(5) = |Z∗
5| = 4 (The familiar Euler phi function)

Observe 14 = 1 24 = 1 34 = 1 44 = 1

But also 42 = 1.

The set {1, 4} is also a group wrt multiplication modulo 5.

Hence {1, 4} is a subgroup of Z
∗
5 and |{1, 4}| = 2.

Another finite group Z
∗
5 = {1, 2, 3, 4}

2× 2 = 4 2× 3 = 1 2× 4 = 3 3× 3 = 4 3× 4 = 2 4× 4 = 1

We have 1−1 = 1 2−1 = 3 3−1 = 2 4−1 = 4

Also 20 = 1 21 = 2 22 = 4 23 = 3

Hence 2 is a generator of the group.

Similarly 30 = 1 31 = 3 32 = 4 33 = 2

Hence 3 is also a generator of the group.

φ(5) = |Z∗
5| = 4 (The familiar Euler phi function)

Observe 14 = 1 24 = 1 34 = 1 44 = 1

But also 42 = 1.

The set {1, 4} is also a group wrt multiplication modulo 5.

Hence {1, 4} is a subgroup of Z
∗
5 and |{1, 4}| = 2.

Z
∗
8 = {1, 3, 5, 7}

3× 3 = 1 3× 5 = 7 3× 7 = 5 5× 5 = 1 5× 7 = 3 7× 7 = 1

We have 1−1 = 1 3−1 = 3 5−1 = 5 7−1 = 7

Also 30 = 1 31 = 3 32 = 1

Similarly 50 = 1 51 = 5 52 = 1

And 70 = 1 71 = 7 72 = 1

φ(8) = |Z∗
5| = 4

Observe 14 = 1 34 = 1 54 = 1 74 = 1

But also 32 = 52 = 72 = 1.

The sets {1, 3}, {1, 5}, {1, 7} are each groups wrt multiplication modulo 8.

Hence they are subgroups of Z
∗
8, each of order 2.

Z
∗
8 = {1, 3, 5, 7}

3× 3 = 1 3× 5 = 7 3× 7 = 5 5× 5 = 1 5× 7 = 3 7× 7 = 1

We have 1−1 = 1 3−1 = 3 5−1 = 5 7−1 = 7

Also 30 = 1 31 = 3 32 = 1

Similarly 50 = 1 51 = 5 52 = 1

And 70 = 1 71 = 7 72 = 1

φ(8) = |Z∗
5| = 4

Observe 14 = 1 34 = 1 54 = 1 74 = 1

But also 32 = 52 = 72 = 1.

The sets {1, 3}, {1, 5}, {1, 7} are each groups wrt multiplication modulo 8.

Hence they are subgroups of Z
∗
8, each of order 2.

Z
∗
8 = {1, 3, 5, 7}

3× 3 = 1 3× 5 = 7 3× 7 = 5 5× 5 = 1 5× 7 = 3 7× 7 = 1

We have 1−1 = 1 3−1 = 3 5−1 = 5 7−1 = 7

Also 30 = 1 31 = 3 32 = 1

Similarly 50 = 1 51 = 5 52 = 1

And 70 = 1 71 = 7 72 = 1

φ(8) = |Z∗
5| = 4

Observe 14 = 1 34 = 1 54 = 1 74 = 1

But also 32 = 52 = 72 = 1.

The sets {1, 3}, {1, 5}, {1, 7} are each groups wrt multiplication modulo 8.

Hence they are subgroups of Z
∗
8, each of order 2.

Z
∗
8 = {1, 3, 5, 7}

3× 3 = 1 3× 5 = 7 3× 7 = 5 5× 5 = 1 5× 7 = 3 7× 7 = 1

We have 1−1 = 1 3−1 = 3 5−1 = 5 7−1 = 7

Also 30 = 1 31 = 3 32 = 1

Similarly 50 = 1 51 = 5 52 = 1

And 70 = 1 71 = 7 72 = 1

φ(8) = |Z∗
5| = 4

Observe 14 = 1 34 = 1 54 = 1 74 = 1

But also 32 = 52 = 72 = 1.

The sets {1, 3}, {1, 5}, {1, 7} are each groups wrt multiplication modulo 8.

Hence they are subgroups of Z
∗
8, each of order 2.

Z
∗
8 = {1, 3, 5, 7}

3× 3 = 1 3× 5 = 7 3× 7 = 5 5× 5 = 1 5× 7 = 3 7× 7 = 1

We have 1−1 = 1 3−1 = 3 5−1 = 5 7−1 = 7

Also 30 = 1 31 = 3 32 = 1

Similarly 50 = 1 51 = 5 52 = 1

And 70 = 1 71 = 7 72 = 1

φ(8) = |Z∗
5| = 4

Observe 14 = 1 34 = 1 54 = 1 74 = 1

But also 32 = 52 = 72 = 1.

The sets {1, 3}, {1, 5}, {1, 7} are each groups wrt multiplication modulo 8.

Hence they are subgroups of Z
∗
8, each of order 2.

Consider a group G wrt the operation ×.

If S ⊆ G and S is also a group wrt the same operation ×,

then S is called a subgroup of G.

Fact: if S is a subgroup of a finite group G then |S| divides |G|.

Fact: if G is a finite group and x ∈ G then x|G| = e.

Hence if x ∈ Z
∗
p then xφ(p) = 1

(mod p of course, but this is often left unwritten)

We used this for our discussion on RSA. Recall:

φ(p) = Z
∗
p = |{1, . . . , p− 1}| = p− 1 when p is prime.

φ(pq) = Z
∗
pq = |{1, . . . , pq − 1} \ {p, 2p, . . . , (q − 1)p, q, 2q, . . . , (p− 1)q}|

= pq − 1− (p− 1 + q − 1) = (p− 1)(q − 1) when p and q are distinct

primes.

Consider a group G wrt the operation ×.

If S ⊆ G and S is also a group wrt the same operation ×,

then S is called a subgroup of G.

Fact: if S is a subgroup of a finite group G then |S| divides |G|.

Fact: if G is a finite group and x ∈ G then x|G| = e.

Hence if x ∈ Z
∗
p then xφ(p) = 1

(mod p of course, but this is often left unwritten)

We used this for our discussion on RSA. Recall:

φ(p) = Z
∗
p = |{1, . . . , p− 1}| = p− 1 when p is prime.

φ(pq) = Z
∗
pq = |{1, . . . , pq − 1} \ {p, 2p, . . . , (q − 1)p, q, 2q, . . . , (p− 1)q}|

= pq − 1− (p− 1 + q − 1) = (p− 1)(q − 1) when p and q are distinct

primes.

Consider a group G wrt the operation ×.

If S ⊆ G and S is also a group wrt the same operation ×,

then S is called a subgroup of G.

Fact: if S is a subgroup of a finite group G then |S| divides |G|.

Fact: if G is a finite group and x ∈ G then x|G| = e.

Hence if x ∈ Z
∗
p then xφ(p) = 1

(mod p of course, but this is often left unwritten)

We used this for our discussion on RSA. Recall:

φ(p) = Z
∗
p = |{1, . . . , p− 1}| = p− 1 when p is prime.

φ(pq) = Z
∗
pq = |{1, . . . , pq − 1} \ {p, 2p, . . . , (q − 1)p, q, 2q, . . . , (p− 1)q}|

= pq − 1− (p− 1 + q − 1) = (p− 1)(q − 1) when p and q are distinct

primes.

Consider a group G wrt the operation ×.

If S ⊆ G and S is also a group wrt the same operation ×,

then S is called a subgroup of G.

Fact: if S is a subgroup of a finite group G then |S| divides |G|.

Fact: if G is a finite group and x ∈ G then x|G| = e.

Hence if x ∈ Z
∗
p then xφ(p) = 1

(mod p of course, but this is often left unwritten)

We used this for our discussion on RSA. Recall:

φ(p) = Z
∗
p = |{1, . . . , p− 1}| = p− 1 when p is prime.

φ(pq) = Z
∗
pq = |{1, . . . , pq − 1} \ {p, 2p, . . . , (q − 1)p, q, 2q, . . . , (p− 1)q}|

= pq − 1− (p− 1 + q − 1) = (p− 1)(q − 1) when p and q are distinct

primes.

Let G be a group and a ∈ G.

Consider the set 〈a〉 = {ai | i ∈ Z} ⊆ G.

(a3 denotes a× a× a; a0 denotes e; a−3 denotes (a−1)3)

Clearly 〈a〉 is a subgroup of G:

• Take any two elements ai and aj from 〈a〉. Then ai × aj = ai+j ∈ 〈a〉.

• Associativity property holds already for the whole group G.

• e = a0 ∈ 〈a〉.

• Take any element ai ∈ 〈a〉. Then we know that

ai × a−i = (a× a−1)i = ei = e and a−i ∈ 〈a〉. Also a−i × ai = e.

〈a〉 is called the subgroup generated by a.

Further if 〈a〉 = G then a is called a generator of G, and G is called a

cyclic group.

In case of the groups Z
∗
p we know that xφ(p) = 1 for every x ∈ Z

∗
p.

Hence it is unnecessary to consider negative powers.

x−1 = x−1xφ(p) = xφ(p)−1, x−2 = (x−1)2

Hence 〈x〉 = {x0, x1, x2 . . .}

Also xφ(p) = x0, xφ(p)+1 = x1 . . .

Hence 〈x〉 = {x0, x1, x2 . . . , xφ(p)−1}

For the group Z
∗
5 = {1, 2, 3, 4} we have

〈1〉 = {1} 〈2〉 = {1, 2, 4, 3} 〈3〉 = {1, 3, 4, 2} 〈4〉 = {1, 4}

Z
∗
5 is cyclic because it has generators 2 and 3.

Z
∗
8 is not cyclic: 〈3〉 = {1, 3}, 〈5〉 = {1, 5}, 〈7〉 = {1, 7}

Fact: Z
∗
p is cyclic for every prime p.

In case of the groups Z
∗
p we know that xφ(p) = 1 for every x ∈ Z

∗
p.

Hence it is unnecessary to consider negative powers.

x−1 = x−1xφ(p) = xφ(p)−1, x−2 = (x−1)2

Hence 〈x〉 = {x0, x1, x2 . . .}

Also xφ(p) = x0, xφ(p)+1 = x1 . . .

Hence 〈x〉 = {x0, x1, x2 . . . , xφ(p)−1}

For the group Z
∗
5 = {1, 2, 3, 4} we have

〈1〉 = {1} 〈2〉 = {1, 2, 4, 3} 〈3〉 = {1, 3, 4, 2} 〈4〉 = {1, 4}

Z
∗
5 is cyclic because it has generators 2 and 3.

Z
∗
8 is not cyclic: 〈3〉 = {1, 3}, 〈5〉 = {1, 5}, 〈7〉 = {1, 7}

Fact: Z
∗
p is cyclic for every prime p.

Back to the Diffie-Hellman secret key exchange

p is a prime and g is a generator of Z
∗
p.

A and B choose randomly Na and Nb respectively from {0, 1, . . . , p− 2}

and exchange the messages gNa and gNb .

The common key computed by both is gNaNb .

The exchanged messages and the common keys are all from the set Z
∗
p.

The recommended size of p is 512 bits or better 1024 bits.

How secure is this protocol?

Back to the Diffie-Hellman secret key exchange

p is a prime and g is a generator of Z
∗
p.

A and B choose randomly Na and Nb respectively from {0, 1, . . . , p− 2}

and exchange the messages gNa and gNb .

The common key computed by both is gNaNb .

The exchanged messages and the common keys are all from the set Z
∗
p.

The recommended size of p is 512 bits or better 1024 bits.

How secure is this protocol?

Important: this protocol should not be analyzed according to the usual

Dolev-Yao model.

E.g. suppose we model message xy as the term exp(x, y).

The key computed by A is then exp(exp(g,Nb), Na)

and that computed by B is exp(exp(g,Na), Nb).

But in the Dolev-Yao model, distinct terms represent distinct messages.

Hence in the normal run of the protocol (without interference from the

attacker), the keys computed by A and B are not the same!

A possible solution: consider extensions of the Dolev-Yao model with

certain equations on terms, e.g. exp(exp(x, y), z) = exp(exp(x, z), y) . . .

The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and

computes a common key.

Another attack, A may send gNa to B which is intercepted by C

who replies with his own message gNc .

A thinks he has a common key gNaNc with B

but actually the key is known to C.

The protocol is clearly insecure in the presence of an active attacker.

We now consider a passive adversary: one who spies on messages in the

network but does not modify them.

The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and

computes a common key.

Another attack, A may send gNa to B which is intercepted by C

who replies with his own message gNc .

A thinks he has a common key gNaNc with B

but actually the key is known to C.

The protocol is clearly insecure in the presence of an active attacker.

We now consider a passive adversary: one who spies on messages in the

network but does not modify them.

The protocol provides no authentication.

An attack: attacker C pretends to be A, starts a session with B and

computes a common key.

Another attack, A may send gNa to B which is intercepted by C

who replies with his own message gNc .

A thinks he has a common key gNaNc with B

but actually the key is known to C.

The protocol is clearly insecure in the presence of an active attacker.

We now consider a passive adversary: one who spies on messages in the

network but does not modify them.

The passive adversary observes the messages gNa and gNb .

Also the values p and g are public.

Can the intruder compute the common key gNaNb from them.

A suggestion: from gNa the attacker computes Na, and from gNb he

computes Nb. From these he can easily compute gNaNb.

The discrete logarithm problem: given a prime p,

a generator g of the group Z
∗
p and an element M ∈ Z

∗
p,

compute the unique x ∈ {0, . . . , p− 2} such that gx mod p = M

A naive algorithm: for each x ∈ {0, . . . , p− 2} check whether

gx mod p = M .

The number of possibilities for x is exponential

in the binary representation of p.

The passive adversary observes the messages gNa and gNb .

Also the values p and g are public.

Can the intruder compute the common key gNaNb from them.

A suggestion: from gNa the attacker computes Na, and from gNb he

computes Nb. From these he can easily compute gNaNb.

The discrete logarithm problem: given a prime p,

a generator g of the group Z
∗
p and an element M ∈ Z

∗
p,

compute the unique x ∈ {0, . . . , p− 2} such that gx mod p = M

A naive algorithm: for each x ∈ {0, . . . , p− 2} check whether

gx mod p = M .

The number of possibilities for x is exponential

in the binary representation of p.

The passive adversary observes the messages gNa and gNb .

Also the values p and g are public.

Can the intruder compute the common key gNaNb from them.

A suggestion: from gNa the attacker computes Na, and from gNb he

computes Nb. From these he can easily compute gNaNb.

The discrete logarithm problem: given a prime p,

a generator g of the group Z
∗
p and an element M ∈ Z

∗
p,

compute the unique x ∈ {0, . . . , p− 2} such that gx mod p = M

A naive algorithm: for each x ∈ {0, . . . , p− 2} check whether

gx mod p = M .

The number of possibilities for x is exponential

in the binary representation of p.

The passive adversary observes the messages gNa and gNb .

Also the values p and g are public.

Can the intruder compute the common key gNaNb from them.

A suggestion: from gNa the attacker computes Na, and from gNb he

computes Nb. From these he can easily compute gNaNb.

The discrete logarithm problem: given a prime p,

a generator g of the group Z
∗
p and an element M ∈ Z

∗
p,

compute the unique x ∈ {0, . . . , p− 2} such that gx mod p = M

A naive algorithm: for each x ∈ {0, . . . , p− 2} check whether

gx mod p = M .

The number of possibilities for x is exponential

in the binary representation of p.

One-way functions are functions f such that it is “easy” to compute f(x)

from x but “difficult” to compute x from f(x).

The function f where f(p, g, x) = gx mod p is believed to be one-way, but

no proof is known.

I.e. the discrete logarithm problem is believed to be difficult.

The Diffie-Hellman problem: Given gx and gy for some x, y chosen from

{0, . . . , p− 2}, compute gxy.

The discrete logarithm problem is at least as difficult as the Diffie-Hellman

problem, i.e. solving the former allows one to solve the latter.

The converse is an open question: does solving the Diffie-Hellman problem

allow us to solve the discrete logarithm problem?

The Diffie-Hellman assumption: The Diffie-Hellman problem is difficult.

In fact it is unknown whether there are any one-way functions at all!

Some other functions which are believed to be one-way:

• Factoring. The function f(x, y) = xy is believed to be one-way.

• RSA. The function is f(x) = xe mod n where n = pq for

two primes p, q with (e, φ(n)) = 1.

This is believed to be a trapdoor one-way function with secrets p, q:

knowledge of the secrets allows one to invert f , but inverting f is

difficult otherwise.

The best known algorithm for inverting f is to factor N .

Summary: The Diffie-Hellman secret key exchange protocol is secure

in the presence of a passive attacker (under the DH assumption)

In fact it is unknown whether there are any one-way functions at all!

Some other functions which are believed to be one-way:

• Factoring. The function f(x, y) = xy is believed to be one-way.

• RSA. The function is f(x) = xe mod n where n = pq for

two primes p, q with (e, φ(n)) = 1.

This is believed to be a trapdoor one-way function with secrets p, q:

knowledge of the secrets allows one to invert f , but inverting f is

difficult otherwise.

The best known algorithm for inverting f is to factor N .

Summary: The Diffie-Hellman secret key exchange protocol is secure

in the presence of a passive attacker (under the DH assumption)

Key distribution in the two-party
symmetric key model

The two parties already share a (symmetric) long-lived key and want to

compute a common symmetric key for a session.

No trusted third party is involved.

Possible motivations:

– prevent over-exposure of and repeated access to the long lived key.

– another motivation, especially in the asymmetric key model (where the

long lived keys are asymmetric), is that symmetric key cryptography is

much more efficient.

A message authentication scheme consists of a tagging algorithm T and a

verification algorithm V .

Given a message m and a key K we can compute the tag

t = TK(m) .

A person knowing m and K can then verify the tag.

b = VK(m, t) .

We require the property

VK(m, TK(m)) = 1

Security requirement: it is difficult for an attacker to forge a pair m, t

such that VK(m, t) = 1.

I.e. the attacker tries to produce a tag for a new message after having

observed some tags of other messages.

The AKEP1 protocol (Authenticated Key Exchange Protocol 1)

A and B share a long-lived key Ke
ab for symmetric encryption and a

long-lived key Km
ab for message authentication.

A→ B : A,Na

B → A : Nb, {k}Ke
ab

, TKm
ab

(〈B,A,Na, Nb, {k}Ke
ab
〉)

A→ B : TKm
ab

(〈A,Nb〉)

Na and Nb are nonces generated by A and B respectively.

k is the session key (nonce) generated by B.

A and B first verify that the respective tags they received are correct,

before accepting the session key.

Informal analysis.

A→ B : A,Na

B → A : Nb, {k}Ke
ab

, TKm
ab

(〈B,A,Na, Nb, {k}Ke
ab
〉)

A→ B : TKm
ab

(〈A,Nb〉)

From point of view of A:

If A and B are honest then Ke
ab and Km

ab are known only to A and B.

Hence the encryption {k}Ke
ab

must have been performed by B.

The tag he receives must have been created by B. Hence the encryption

{k}Ke
ab

was performed by B in response to the nonce Na that he sent.

From point of view of B: the tag he receives ensures that the tag in the

second step was accepted by A.

The two-party asymmetric model

A digital signature scheme consists of a signing algorithm S and a

verification algorithm V .

Given message m and private key K−1 we can compute the signature

s = S(K
−1,m) .

A person knowing m and K can then verify the signature.

b = V(K,m, s) .

We require the property

V(K,m, s) = 1 if and only if s = S(K−1,m)

Security requirement: it is difficult for an attacker to forge a pair m, s

such that V(K,m, s) = 1.

The protocol

Each user A has public keys Ke
a and Kd

a for encryption and signature

schemes respectively. The corresponding private keys are Ke
a
−1 and Kd

a

−1
.

These are long-lived keys. The symmetric session key k is created as:

A→ B : A,Na

B → A : Nb, {k}Ke
a
,S(Kd

b

−1
, 〈B,A,Na, Nb, {k}Ke

ab
〉)

A→ B : S(Kd
a

−1
, 〈A,Nb〉)

Compare with the Needham-Schroeder public key protocol

A −→ B : {A,Na}Ke
b

B −→ A : {Na, Nb}Ke
a

A −→ B : {Nb}Ke
b

There B has no guarantee about who created the first and third messages.

The protocol

Each user A has public keys Ke
a and Kd

a for encryption and signature

schemes respectively. The corresponding private keys are Ke
a
−1 and Kd

a

−1
.

These are long-lived keys. The symmetric session key k is created as:

A→ B : A,Na

B → A : Nb, {k}Ke
a
,S(Kd

b

−1
, 〈B,A,Na, Nb, {k}Ke

ab
〉)

A→ B : S(Kd
a

−1
, 〈A,Nb〉)

Compare with the Needham-Schroeder public key protocol

A −→ B : {A,Na}Ke
b

B −→ A : {Na, Nb}Ke
a

A −→ B : {Nb}Ke
b

There B has no guarantee about who created the first and third messages.

