
More about message authentication and signature schemes

The RSA digital signature scheme

– Use the public key (n, e) and private key d as for RSA encryption and

decryption.

– Signature of message m is md mod n.

– To verify that s is signature of m, check that se = m (mod n).

Verification succeeds iff s is signature of m.

An attack: Suppose an attacker knows

m1 and s1 = md
1 mod n

m1 and s1 = md
1 mod n

He can then forge the signature of m1m2:

(m1m2)
d mod n = (md

1 mod n)(md
2 mod n) mod n

More about message authentication and signature schemes

The RSA digital signature scheme

– Use the public key (n, e) and private key d as for RSA encryption and

decryption.

– Signature of message m is md mod n.

– To verify that s is signature of m, check that se = m (mod n).

Verification succeeds iff s is signature of m.

An attack: Suppose an attacker knows

m1 and s1 = md
1 mod n

m1 and s1 = md
1 mod n

He can then forge the signature of m1m2:

(m1m2)
d mod n = (md

1 mod n)(md
2 mod n) mod n

An example message authentication scheme

Encrypt the message using CBC (Cipher Block Chaining) with zero IV.

The tag is the last block of ciphertext.

Given key K and message containing n blocks: m = B1 . . . Bn

C0 = 0 . . . 0

Ci = {Ci−1 ⊕Bi}K (1 ≤ i ≤ n)

Tagging: TK(m) = Cn

Verification VK(m, t): just check whether t = TK(m)!

Verification is trivial if the tagging algorithm is deterministic.

(Note that the algorithm for encrypting a block is deterministic.)

Security ??

An example message authentication scheme

Encrypt the message using CBC (Cipher Block Chaining) with zero IV.

The tag is the last block of ciphertext.

Given key K and message containing n blocks: m = B1 . . . Bn

C0 = 0 . . . 0

Ci = {Ci−1 ⊕Bi}K (1 ≤ i ≤ n)

Tagging: TK(m) = Cn

Verification VK(m, t): just check whether t = TK(m)!

Verification is trivial if the tagging algorithm is deterministic.

(Note that the algorithm for encrypting a block is deterministic.)

Security ??

An example message authentication scheme

Encrypt the message using CBC (Cipher Block Chaining) with zero IV.

The tag is the last block of ciphertext.

Given key K and message containing n blocks: m = B1 . . . Bn

C0 = 0 . . . 0

Ci = {Ci−1 ⊕Bi}K (1 ≤ i ≤ n)

Tagging: TK(m) = Cn

Verification VK(m, t): just check whether t = TK(m)!

Verification is trivial if the tagging algorithm is deterministic.

(Note that the algorithm for encrypting a block is deterministic.)

Security ??

Modeling in the Dolev-Yao style

If the intruder knows K and m then he knows TK(m).

If the intruder knows K and m then he knows S(K,m).

For describing the AKEP1 protocol, choose keys

shre(x, y) and shrm(x, y) to be used in sessions started by x involving y.

We have rule:

Agent(x), Da(y) I(shre(x, y)), I(shrm(x, y)),

I(shre(y, x)), I(shrm(y, x)), Agent(x), Da(y)

A→ B : A,Na

B → A : Nb, {k}Ke
ab

, TKm
ab

(〈B,A,Na, Nb, {k}Ke
ab
〉)

A→ B : TKm
ab

(〈A,Nb〉)

The rules describing the protocol are as usual. Some example properties for

reachable protocol states S containing Ha(x), Ha(y):

– S does not contain shre(x, y) or shrm(x, y).

– If S contains B1(x, y, u, v, w), I(m) and w occurs in m, then it occurs as

{w}shre(x,y).

– If S contains {w}shre(x,y) then S contains B1(x, y, u, v, w) or

B2(x, y, u, v, w).

. . .

Forward secrecy

A and B create different session keys k1, k2, . . . in different sessions.

Consider that at some point of time the long-lived keys of A gets exposed,

i.e. the attacker finds out the keys Ke−1,Kd−1
.

Then all future session keys of A are compromised. To prevent this A can

revoke the public keys Ke
a,K

d
a as soon as possible.

But what about past session keys?

Forward secrecy: past sessions should not be compromised

even if long-lived keys are exposed.

In the above protocol, the attacker records {k}Ke
a

for each session key k,

so he obtains k.

Hence he obtains all messages encrypted with session keys in past sessions.

Forward secrecy using Diffie-Hellman key
exchange

A→ B : gNa

B → A : gNb ,S(Kd
b

−1
, 〈B,A, gNa , gNb〉)

A→ B : S(Kd
a

−1
, 〈A, gNb〉)

This protocol is meant to work in the presence of an active attacker.

If the long-lived keys are exposed after the session,

the session key gNaNb is still not exposed.

Protocol analysis:
some complexity results

We consider protocols described using multiset rewriting rules, and secrecy

properties expressed as non-reachability of bad protocol states, as seen in

our examples.

We consider unbounded number of sessions.

• The secrecy problem is undecidable

• The problem remains undecidable if protocols don’t use nonces

• In case of arbitrarily many nonces, the problem remains undecidable

even if the depth and width of terms (messages) involved in the

protocols are bounded by constants.

We consider protocols described using multiset rewriting rules, and secrecy

properties expressed as non-reachability of bad protocol states, as seen in

our examples.

We consider unbounded number of sessions.

• The secrecy problem is undecidable

• The problem remains undecidable if protocols don’t use nonces

• In case of arbitrarily many nonces, the problem remains undecidable

even if the depth and width of terms (messages) involved in the

protocols are bounded by constants.

We consider protocols described using multiset rewriting rules, and secrecy

properties expressed as non-reachability of bad protocol states, as seen in

our examples.

We consider unbounded number of sessions.

• The secrecy problem is undecidable

• The problem remains undecidable if protocols don’t use nonces

• In case of arbitrarily many nonces, the problem remains undecidable

even if the depth and width of terms (messages) involved in the

protocols are bounded by constants.

We consider protocols described using multiset rewriting rules, and secrecy

properties expressed as non-reachability of bad protocol states, as seen in

our examples.

We consider unbounded number of sessions.

• The secrecy problem is undecidable

• The problem remains undecidable if protocols don’t use nonces

• In case of arbitrarily many nonces, the problem remains undecidable

even if the depth and width of terms (messages) involved in the

protocols are bounded by constants.

A positive result for unbounded number of sessions, no nonces, bounded

message widths and depths.

In this case we can decide secrecy in EXPTIME.

• There is an exponential bound on the number of distinct facts that

can be derived from the rules during protocol execution.

• Each role can be rerun as many times as we want.

• If we can reach a state S containing fact P (
−→
t) then we can reach

another state S ′ ⊇ S which contains at least one more copy of P (
−→
t).

• Any rule from any role can be applied any number of times.

• All facts can be treated as persistent facts.

Decision procedure:

1. R := the set of ground instances of rules from protocol theory and

intruder theory.

2. F := ∅

3. repeat:

(a) Select a rule l→ r from R.

(b) If l ⊂ F then F := F ∪ r.

4. until no new facts can be added.

Check if some ground instance of the security property is included in F .

The algorithm terminates in exponential time.

(Actually we cannot do better :-))

If further, we only allow bounded number of sessions, then the non-secrecy

problem is in NP.

(This is again optimal, i.e. the problem is NP-complete :-))

We may consider protocols with nonces, but because of finitely many

sessions they can just be considered as finitely many constants.

An NP decision procedure for bounded number of sessions

We take as input a candidate attack and check that this actually

represents an attack.

– We show that the length of candidate attacks is of polynomial length.

– We present a polynomial time decision procedure for checking that a

given candidate attack is actually an attack.

Showing that candidate attack runs are of polynomial length:

Let r be the bound on the number of sessions.

Let R be the maximum number of steps in a session.

Hence any attack consists of at most rR protocol steps.

Let k be the bound on message size.

The maximum number of distinct nonces generated by the intruder is

B = krR.

The maximum number of distinct nonces used by the participants

is also B.

These can be assumed to be generated beforehand.

Guessing a polynomial length candidate attack:

1. Guess a set of at most krR nonces to be used by the intruder in the

attack. These are included in the intruder’s initial knowledge.

2. Generate upto r roles using the rules for role generation. These initial

role states also contain all the nonces that are going to be used by that

role.

3. Guess a candidate sequence of upto rR protocol steps for the attack.

The variables occurring in these rules are fully instantiated by actual

messages, nonces, keys. Let the sequence of steps be s1, . . . , sN .

Checking that the candidate attack sequence is a valid protocol run

Let Si be the multiset of facts after step si. S0 contains the initial

knowledge of the intruder, initial role states, etc. For each rule

si : Aj(−→m), I(n)→ Ak(
−→
m′), I(n′), I(n)

1. Check that Ai(−→m) ∈ Si−1. If not, REJECT.

2. Check that the message n can be can be deduced by the intruder from

the messages in his memory in Si−1. If not, REJECT.

3. The new state Si has all the facts of Si−1 except a fact Aj(−→m), as well

as new facts Ak(
−→
m′) and I(n′).

The above procedure is repeated for each of the steps s1, . . . , sN .

Guess a suitable instance of the security property. If it is included in sN

then ACCEPT otherwise REJECT.

Protocols as processes: spi calculus
[AbadiGordon97]
Extends pi calculus [MilnerParrowWalker92] by adding cryptographic

operations.

Pi calculus programs consist of independent parallel processes that

synchronize by passing messages on named channels.

Channels may be restricted, so that only certain processes can

communicate on them. Scope of channels may change during execution:

channels can be sent as messages.

Security is expressed as equivalence between processes in the eyes of an

arbitrary environment. Environment is modeled as an arbitrary spi calculus

process.

We write c〈M〉.P to denote a process that sends the message M on

channel c after which it executes the process P .

c(x).Q denotes a process that is listening on the channel c. If it receives

some message M on this channel then it will execute the process Q[M/x].

We may compose these two processes in parallel to get a bigger process,

denoted as c〈M〉.P | c(x).Q. Now the two smaller processes may

communicate on the channel c after which they will execute the process

P | Q[M/x].

We use 0 to denote the nil process which does nothing.

A one message protocol:

A −→ B : M on cAB

A(M) , cAB〈M〉.0

B , cAB(x).0

Inst(M) , (νcAB)(A(M) | B)

(νc)P denotes a process that creates a new channel c which is then used

by the process P . This channel is not accessible outside the process P .

Inst(M) is an abstraction. For any M it denotes an exchange of message

M between A and B.

For example Inst(0) denotes exchange of the data ‘0’ between A and B.

A(0) = cAB〈0〉.0

B = cAB(x).0

Inst(0) = (νcAB)(A(0) | B)

Here B runs the process F on the message M that it gets.

A(M) , cAB〈M〉.0

B , cAB(x).F (x)

Inst(M) , (νcAB)(A(M) | B)

Authenticity : B always applies F to the message M that A sends.

Secrecy : If F does not reveal M then the whole process does not reveal

M . Stated in terms of equivalence:

If F (M) ' F (M ′) for all M,M ′ then Inst(M) ' Inst(M ′) for all M,M ′.

For authenticity, we take the following protocol as specification:

A(M) , cAB〈M〉.0

Bspec(M) , cAB(x).F (M)

Instspec(M) , (νcAB)(A(M) | Bspec(M))

Authenticity: Inst(M) ' Instspec(M) for all M .

Terms

We assume an infinite set m,n, p, q, r, . . . of names and an infinite set

x, y, z, . . . of variables.

Terms L,M,N ::=

n name

(M,N) pair

0 zero

suc(M) successor

x variable

Pi calculus processes

P,Q,R ::=

M〈N〉.P output

M(x).P input

P | Q parallel composition

(νn)P restriction

!P replication

[M is N]P match

0 nil

let (x, y) = M in P pair splitting

case M of 0 : P suc(x) : Q integer case

Channel establishment:

A −→ S : cAB on cAS

S −→ B : cAB on cSB

A −→ B : M on cAB

A(M) , (νcAB)cAS〈cAB〉.cAB〈M〉.0

S , cAS(x).cSB〈x〉.0

B , cSB(x).x(y).F (y)

Inst(M) , (νcAS)(νcSB)(A(M) | S | B)

The scope of the channel cAB extrudes out of A to B.

A(M) , (νcAB)cAS〈cAB〉.cAB〈M〉.0

S , cAS(x).cSB〈x〉.0

Bspec(M) , cSB(x).x(y).F (M)

Inst(M) , (νcAS)(νcSB)(A(M) | S | Bspec(M))

Authenticity: Inst(M) ' Instspec(M), for all M

Secrecy: Inst(M) ' Inst(M ′) if F (M) ' F (M ′), for all M,M ′.

Adding cryptography: the spi calculus

Terms L,M,N ::=

n name

(M,N) pair

0 zero

suc(M) successor

x variable

{M}N encryption

Processes P,Q,R ::=

M〈N〉.P output

M(x).P input

P | Q parallel composition

(νn)P restriction

!P replication

[M is N]P match

0 nil

let (x, y) = M in P pair splitting

case M of 0 : P suc(x) : Q integer case

case L of {x}N in P decryption

A one message protocol using cryptography:

A −→ B : {M}KAB
on cAB

A(M) , cAB〈{M}KAB
〉.0

B , cAB(x).case x of {y}KAB
in F (y)

Inst(M) , (νKAB)(A(M) | B)

The key KAB is restricted, only A and B can use it. On the other hand

the channel cAB is public. Other principals may send messages on it or

listen on it.

The specification protocol for authentication:

A(M) , cAB〈{M}KAB
〉.0

Bspec(M) , cAB(x).case x of {y}KAB
in F (M)

Instspec(M) , (νKAB)(A(M) | Bspec(M))

Authenticity: Inst(M) ' Instspec(M) for all M .

Secrecy : Inst(M) ' Inst(M ′) if F (M) ' F (M ′), for all M,M ′.

The notion of process equivalence needs to be coarse-grained enough.

P (M) , (νK)c〈{M}K〉.0

Clearly P (M) and P (M ′) are different for different M and M ′. Usual

equivalence relations would distinguish them.

However we would like to consider P (M) and P (M ′) as equivalent

processes because no outside observer can distinguish them because of the

encryption using the restricted key K.

Key establishment:

A −→ S : {KAB}KAS
on cAS

S −→ B : {KAB}KSB
on cSB

A −→ B : {M}KAB
on cAB

A(M) , (νKAB)(cAS〈{KAB}KAS
〉

.cAB〈{M}KAB
〉.0

S , cAS(x).case x of {y}KAS
in cSB〈{y}KSB

〉.0

B , cSB(x).case x of {y}KSB
in

cAB(z).case z of {w}y in F (w)

Inst(M) , (νKAS)(νKSB)(A(M) | S | B)

A(M) , (νKAB)(cAS〈{KAB}KAS
〉.

cAB〈{M}KAB
〉.0

S , cAS(x).case x of {y}KAS
in

cSB〈{y}KSB
〉.0

Bspec(M) , cSB(x).case x of {y}KSB
in

cAB(z).case z of {w}y in F (M)

Instspec(M) , (νKAS)(νKSB)(A(M) | S | Bspec(M))

Authenticity: Inst(M) ' Instspec(M), for all M

Secrecy: Inst(M) ' Inst(M ′) if F (M) ' F (M ′), for all M,M ′.

