
Formal semantics

Let fn(M) and fn(P) be the set of free names in term M and process P

respectively. Let fv(M) and fv(P) be the set of free variables in term M

and process P respectively.

Closed processes are processes without any free variables.

Reaction relation:

A process is like a chemical solution of molecules waiting to react.

m〈N〉.P | m(x).Q→ P | Q[N/x]

Reduction relation > on closed processes:

!P > P |!P

[M is M]P > P

let (x, y) = (M,N) in P > P [M/x][N/y]

case 0 of 0 : P suc(x) : Q > P

case suc(M) of 0 : P suc(x) : Q > Q[M/x]

case {M}N of {x}N in P > P [M/x]

Structural equivalence on closed processes:

P | 0 ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

(νm)(νn)P ≡ (νn)(νm)P

(νn)0 ≡ 0

(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P)

P > Q

P ≡ Q

P ≡ P
P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ P ′

P | Q ≡ P ′ | Q

P ≡ P ′

(νm)P ≡ (νm)P ′

The complete reaction rules:

m〈N〉.P | m(x).Q→ P | Q[N/x]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

P → P ′

P | Q→ P ′ | Q

P → P ′

(νn)P → (νn)P ′

A −→ S : {KAB}KAS
on cAS

S −→ B : {KAB}KSB
on cSB

A −→ B : {M}KAB
on cAB

A(M) , (νKAB)(cAS〈{KAB}KAS
〉

.cAB〈{M}KAB
〉.0

S , cAS(x).case x of {y}KAS
in cSB〈{y}KSB

〉.0

B , cSB(x).case x of {y}KSB
in

cAB(z).case z of {w}y in F (w)

Inst(M) , (νKAS)(νKSB)(A(M) | S | B)

Inst(M) ≡ (νKAS)(νKSB)(A(M) | S | B)

→ (νKAS)(νKSB)(νKAB)

(cAB〈{M}KAB
〉.0 | cSB〈{KAB}KSB

〉.0 | B)

→ (νKAS)(νKSB)(νKAB)

(cAB〈{M}KAB
〉.0 |

cAB(z).case z of {w}KAB
in F (w))

→ (νKAS)(νKSB)(νKAB)F (M)

Testing equivalence

For this equivalence we are interested in the channels on which a process

may communicate.

A barb is an element β ∈ {m,m} where m is a name.

We write P ↓ β to say that the closed process P can input or output

immediately on the barb β. We say that P exhibits barb β.

m(x).P ↓ m m〈M〉.P ↓ m

P ↓ β

P | Q ↓ β

P ↓ β β /∈ {m,m}

(νm)P ↓ β

P ≡ Q Q ↓ β

P ↓ β

We write P ⇓ β to say that P exhibits β after some reactions.

P ↓ β

P ⇓ β

P → Q Q ⇓ β

P ⇓ β

a test is a closed process R and a barb β. A closed process P passes the

test iff (P | R) ⇓ β.

The testing equivalence is defined as:

P ' Q , for any test (R, β), (P | R) ⇓ β iff (Q | R) ⇓ β.

A −→ B : M on cAB

A(M) , cAB〈M〉.0

B , cAB(x).0

Inst(M) , (νcAB)(A(M) | B)

Secrecy property: Inst(M) ' Inst(M ′) for all M,M ′.

i.e., for any process R and barb β,

(Inst(M) | R) ⇓ β iff (Inst(M ′) | R) ⇓ β.

Actually the only barbs exhibited are those by the process R.

But if A and B communicate on unrestricted channels:

A(M) , cAB〈M〉.0

B , cAB(x).0

Inst(M) , A(M) | B

Let m be some message supposed to be secret. Then consider the process

R , cAB(x).[x is m]d〈x〉.0

We have (Inst(m) | R) ⇓ d

but not (Inst(M) | R) ⇓ d for m 6= M .

A(M) , cAB〈M〉.0

B , cAB(x).F (x)

Inst(M) , (νcAB)(A(M) | B)

For any process R, the barbs exhibited by the process Inst(M) | R are

exactly those exhibited by the process F (M) | R, hence we have the

required secrecy property:

If F (M) ' F (M ′) for all M,M ′

then Inst(M) ' Inst(M ′) for all M,M ′

Authenticity:

A(M) , cAB〈M〉.0

Bspec(M) , cAB(x).F (M)

Instspec(M) , (νcAB)(A(M) | Bspec(M))

The barbs exhibited by the process Instspec(M) | R are exactly those

exhibited by the process F (M) | R, hence we have the required

authenticity property:

Inst(M) ' Instspec(M) for all M

In case of encryption:

P (M) , (νK)c〈{M}K〉.0

Secrecy is again preserved: P (M) ' P (M ′) for all M,M ′.

This is because the key K is restricted. No other process R may decrypt

using this key. Hence whatever actions he may take using the message

{M}K he may also take similar actions using the message {M ′}K .

Some approximation techniques for
protocol analysis
The protocol security problem is undecidable.

Hence we do approximate analysis of protocols.

• Unsafe approximation: detect a few attacks, but not necessarily all.

Useful while developing protocols.

– bounding the number of sessions

– bounding the size of messages

– . . .

• Safe approximation: detect all attacks. Sometimes false attacks

may be detected. Useful for certifying protocols.

For the secrecy problem: over-approximate the intruder’s knowledge

Some approximation techniques for
protocol analysis
The protocol security problem is undecidable.

Hence we do approximate analysis of protocols.

• Unsafe approximation: detect a few attacks, but not necessarily all.

Useful while developing protocols.

– bounding the number of sessions

– bounding the size of messages

– . . .

• Safe approximation: detect all attacks. Sometimes false attacks

may be detected. Useful for certifying protocols.

For the secrecy problem: over-approximate the intruder’s knowledge

A common approximation is to let nonces be non-fresh in our modeling of

the protocol.

Insecure protocol remains insecure after this abstraction.

Proof idea: take an attack in the multiset rewriting notation.

Show that systematically replacing a nonce by some other term produces

a valid attack (except for the freshness condition on nonces).

Hence we choose a small number of nonces which are used repeatedly in

several sessions.

Typical approximation: use only a finitely many nonces.

The public key Needham-Schroeder example:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

Following the results on reduction of number of agents, we first fix two

honest agents A,B and one dishonest agent C.

Choose a finite set of nonces n1
xy, n

2
xy, n

1
yx, n

2
yx for distinct agents x and y.

Choose three keys Ka,Kb,Kc.

We have rules to define (an over-approximation of) the set of messages

known to the intruder.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

I({A, n1
ab}Kb

)

I({A, n1
ac}Kc

)

I({B, n1
ba}Ka

)

I({B, n1
bc}Kc

)

I({C, n1
ca}Ka

)

I({C, n1
cb}Kb

)

These can be written as push and pop rules.

The rule I({A, n1
ab}Kb

) is written as

→ q1(A)

→ q2(n
1
ab)

→ q3(Kb)

q1(x), q2(y) → q4(〈x, y〉)

q4(x), q3(y) → I({x}y)

for fresh states q1, q2, q3, q4.

The above are all push rules.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

I({A, x}Kb
) → I({x, n2

ab}Ka
)

I({A, x}Kc
) → I({x, n2

ac}Ka
)

I({B, x}Ka
) → I({x, n2

ba}Kb
)

I({B, x}Kc
) → I({x, n2

bc}Kb
)

I({C, x}Ka
) → I({x, n2

ca}Kc
)

I({C, x}Kb
) → I({x, n2

cb}Kc
)

The rule I({A, x}Kb
)→ I({x, n2

ab}Ka
) can be written as:

→ p1(Kb) (push)

I({y}z), p1(z) → p2(y) (pop)

→ p3(A) (push)

p2(〈y
′, x〉), p3(y

′) → p4(x) (pop)

→ p5(n
2
ab) (push)

p4(x), p5(x
′) → p6(〈x, x′〉) (pop)

→ p7(Ka) (push)

p6(x
′′), p7(x

′′′) → I({x′′}x′′′) (pop)

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

I({n1
ab, x}Ka

)→ I({x}Kb
)

I({n1
ac, x}Ka

)→ I({x}Kc
)

I({n1
ba, x}Kb

)→ I({x}Kc
)

I({n1
bc, x}Kb

)→ I({x}Ka
)

I({n1
ca, x}Kc

)→ I({x}Ka
)

I({n1
cb, x}Kc

)→ I({x}Kb
)

As usual we have the intruder’s initial knowledge:

I(n1
ca) I(n1

cb) I(n2
ac) I(n2

bc) I(Ka) I(Kb)

I(Kc) I(K−1
c) I(A) I(B) I(C)

The rules for intruder actions:

I(x), I(y) → I({x}y)

I({x}k), I(k−1) → I(x)

. . .

Example secrecy question : is nonce n1
ab accepted at state I?

Security of this abstract protocol implies security of the real protocol.

Finally all protocols need not be translatable to push and pop rules.

E.g. rules like q1(f(x, x)), q2(x)→ q(x) are not pop rules.

Indeed the secrecy question is undecidable even for protocols without

nonces.

Less severe abstractions are also possible.

E.g. the nonces may be a function not just of user names, but also of

previous messages exchanged.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

I({A, x}Kb
) → I({x, n2

ab(x)}Ka
)

. . .

The second nonce n2
ab(x) depends on message x received.

Nonces may be non-fresh, but infinitely many of them may be used.

Extending the Dolev-Yao model with
equations

Sometimes an accurate analysis of protocols requires considering special

properties of underlying operations.

E.g. for the Diffie-Hellman key exchange we required special properties of

modular exponentiation.

(gx)y = (gy)x

Other operations that are often used are e.g. XOR.

Sometimes there are attacks against protocols based on these special

properties of the underlying operations.

Group key agreement protocols

Generalization of the Diffie-Hellman key exchange to several participants.

A

B
C

-
αNa

�
�

�
�

�	

αNb, αNa, αNa.Nb

�
�

�
�

��

αNb.Nc, αNa.Nc

@
@

@
@

@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

Group key agreement protocols

Generalization of the Diffie-Hellman key exchange to several participants.

A

B
C

-
αNa

�
�

�
�

�	

αNb, αNa, αNa.Nb

�
�

�
�

��

αNb.Nc, αNa.Nc

@
@

@
@

@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

Group key agreement protocols

Generalization of the Diffie-Hellman key exchange to several participants.

A

B
C

-
αNa

�
�

�
�

�	

αNb, αNa, αNa.Nb

�
�

�
�

��

αNb.Nc, αNa.Nc

@
@

@
@

@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

Group key agreement protocols

Generalization of the Diffie-Hellman key exchange to several participants.

A

B
C

-
αNa

�
�

�
�

�	

αNb, αNa, αNa.Nb

�
�

�
�

��

αNb.Nc, αNa.Nc

@
@

@
@

@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

Group key agreement protocols

Generalization of the Diffie-Hellman key exchange to several participants.

A

B
C

-
αNa

�
�

�
�

�	

αNb, αNa, αNa.Nb

�
�

�
�

��

αNb.Nc, αNa.Nc

@
@

@
@

@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

Group key agreement protocols

Generalization of the Diffie-Hellman key exchange to several participants.

A

B
C

-
αNa

�
�

�
�

�	

αNb, αNa, αNa.Nb

�
�

�
�

��

αNb.Nc, αNa.Nc

@
@

@
@

@I

αNb.Nc, αNa.Nc

Group key αNa.Nb.Nc is then computed by each participant

Code messages αx1...xn by terms e(x1 + . . . + xn)

⇒ + is ACU

The ACU theory

x+(y+z)=(x+y)+z Associativity

x+y=y+x Commutativity

x+0=x Unit

A protocol using XOR

An example protocol using XOR:

+ is XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Requires the XOR theory for modeling.

A protocol using XOR

An example protocol using XOR:

+ is XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Requires the XOR theory for modeling.

A protocol using XOR

An example protocol using XOR:

+ is XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Requires the XOR theory for modeling.

A protocol using XOR

An example protocol using XOR:

+ is XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Requires the XOR theory for modeling.

A protocol using XOR

An example protocol using XOR:

+ is XOR

Alice Bob

-
Na + Kab

�
Nb + Na

-
Sab + Nb

Requires the XOR theory for modeling.

The XOR theory

The ACU theory, together with the equation

x+x=0 Nilpotence

Another example: the Abelian Groups theory

The ACU theory, together with the equation

x+(−x)=0 Cancellation

Typical equational theories that occur often in protocols are

the ACU theory and its variants.

