
The intruder deduction problem in presence of the XOR theory

For simplicity of presentation we only consider messages built from

constants using pairing and symmetric encryption.

Recall the following rules we previously considered for the intruder

deduction problem.

(M) m ∈ T
T ` m

(P)
T ` m1 T ` m2

T ` 〈m1,m2〉

(E)
T ` m1 T ` m2

T ` {m1}m2



(UL)
T ` 〈m1,m2〉

T ` m1

(UR)
T ` 〈m1,m2〉

T ` m2

(D)
T ` {m1}m2 T ` m2

m2 is symmetric
T ` m1

We now add the new rule for XOR.

(X)
T ` m1 . . . T ` mk

T ` m1 + . . . + mk

For any t let t ↓ be its normal form obtained by applying repeatedly the

cancellation rules and removing the 0 symbol. We assume that in the

above rules every term is implicitly normalized after applying each rule.



Define sub(T ) to be the least set such that

• If t ∈ T then t ∈ sub(T )

• If 〈u, v〉 ∈ sub(T ) then u, v ∈ sub(T )

• If {u}v ∈ sub(T ) then u, v ∈ sub(T )

• If u1 + . . . + un ∈ sub(T ) and ui are not headed with + then

u1, . . . , un ∈ sub(T )

Define a minimal derivation using the intruder deduction rules to be the

one of smallest size (the number of applications of the rules).



Observation 1 If a minimal derivation δ has an analysis rule at the end, i.e.

it is of one of the following forms:

δ1 . . . δn

T ` 〈u, v〉

T ` u

δ1 . . . δn

T ` 〈v, u〉

T ` u

δ1 . . . δn

T ` {u}v

···
T ` v

T ` u

Then 〈u, v〉 ∈ sub(T ) (resp. 〈v, u〉 ∈ sub(T ), resp. {u}v ∈ sub(T ))



We consider δ to be of the first form. The other cases are similar.

We claim that for any subtree

δ′ =
δ′1 . . . δ′m
T ` w

occurring in one of δ′1, . . . , δ
′
m, if 〈u, v〉 is a subterm of w and w /∈ T then

for at least one i,

the root of δ′i is labeled with T ` w′ and 〈u, v〉 is a subterm of w′.

To show this consider the last rule used in δ′. If it is (M), (UL), (UR) or

(D) then the claim is obvious.

If the last rule used is (X), i.e. w = (u1 + . . . + un) ↓, then since 〈u, v〉 is

a subterm of w, it is also a subterm of one of the ui.



If the last rule used is (P) then w = 〈w1, w2〉 6= 〈u, v〉 because δ is

minimal. Hence 〈u, v〉 is a subterm of w1 or w2. The case where the last

rule is (E) is similar.

This proves the claim.

It follows that at least one leaf node of the derivation δ is labeled with

T ` w with w ∈ T and 〈u, v〉 a subterm of w. Hence 〈u, v〉 ∈ sub(T ).

This proves Observation 1.



Observation 2 If there is a minimal derivation δ of T ` u then it only

contains nodes of the form T ` v with v ∈ sub(T ∪ {u}).

We do induction on size of δ. If the last rule in δ is (M), (P) or (E) then

the argument is as in the case without equations.

If the last rule used is (UL), (UR) or (D) then the result follows from

Observation 1.

Suppose the last rule is (X) to obtain u = (u1 + . . . + un) ↓ from

derivations δi of T ` ui. It suffices to show that each ui ∈ sub(T ∪ {u}).

Wlog the last rule in δi is not (X). If ui is not headed with + then

ui ∈ sub({u}). Otherwise the last rule in δi is (M), (UL), (UR) or (D).

In the first case, the result is easy and in the other cases we apply

Observation 1.



Hence to check whether a message m can be obtained from a set T of

messages by the above rules, we proceed as in the non-equational case.

We keep on generating more and more messages of sub(T ∪ {m}) which

can be generated from the existing messages using one of the rules.

It remains to show how to check that a term t can be obtained from a set

of terms t1 + . . . + tn using the rule (X).

Each ti is of the form ci,1u1 + . . . + ci,kuk and t is of the form

c1u1 + . . . + ckuk, where ui are pairwise distinct and are not headed with

+, and ci ∈ {0, 1}.



Hence we need to check whether there are some x1, . . . , xn ∈ {0, 1} such

that

x1c1,1 ⊕ . . .⊕ xncn,1 = c1

. . .

x1c1,k ⊕ . . .⊕ xncn,k = ck

where ⊕ is the xor operation on the set {0, 1}.

This can be checked in polynomial time, e.g. using Gaussian elimination.

Hence the intruder deduction problem can be solved in polynomial time in

presence of the exclusive-or operation.



Secrecy analysis for protocols with
bounded number of sessions

In case of bounded number of sessions we earlier obtained an NP algorithm

for deciding non-secrecy by assuming that the size of messages remains

bounded.

We now remove this restriction, and show that the problem is still in NP.

For simplicity consider again only pairing and symmetric encryption

operators.

We need to consider intruder deduction problems over terms involving

variables.

We follow a presentation due to H. Comon-Lundh.



We will deal with constraints of the form

T1 � u1 ∧ . . . ∧ Tn � un

where Ti are sets of terms containing variables and ui are terms containing

variables.

A solution of such a constraint is a substitution σ which maps every variable

occurring in the constraint to some ground term (containing no variables).

σ is a solution of the above constraint if for every i we have

Tiσ ` uiσ

The symbol ` is the one considered before for intruder deduction on ground

terms. The symbol � is used in the constraints involving non-ground terms.



Given a certain number of sessions of a protocol, as in the case of bounded

message size, we first guess a suitable interleaving of the steps of the

protocol. This gives us a sequence of the form

r1 ⇒ s1, . . . , rn ⇒ sn

where ri, si are terms involving variables. Intuitively ri is the message

received in a certain step and si is the message sent in that step.

We need to check whether such a sequence of steps is feasible, for certain

values of the variables in the protocol steps.

This amounts to deciding whether the intruder can construct at each step

the required message which should be received by some agent. At each

step, the sent message is added to the knowledge of the intruder.



We represent this problem as a constraint. Let T0 be the initial knowledge

and s the secret message. We have the following constraint

T0 � r1

T0, s1 � r2

T0, s1, s2 � r3

. . . �

T0, s1, . . . , sn−1 � rn

T0, s1, . . . , sn � s



We have the following well-formedness assumptions on the constraint

C = T1 � u1 ∧ . . . ∧ Tn � un

• The set {T1, . . . , Tn} is totally ordered wrt the subset relation.

• For every T � u occurring in the constraint and every variable

x ∈ V ar(T ), the set

Tx = min{T ′ | T ′ � v ∈ C, x ∈ V ar(v)}

exists and Tx ( T .

(V ar denotes the set of variables occurring in a term.)

These assumptions are true for the constraint constructed from a realistic

protocol, because every variable is introduced first in a received message.



Constraint solving rules

1. C ∧ T � u C

2. C ∧ T � u σ Cσ ∧ Tσ � uσ if σ = mgu(t, u), t ∈ Sub(T ), t 6= u, t, u

not variables.

3. C ∧ T � u σ Cσ ∧ Tσ � uσ if

σ = mgu(t1, t2), t1, t2 ∈ Sub(T ), t1 6= t2, t1, t2 not variables

4. C ∧ T � {u}v  C ∧ T � u ∧ T � v

5. C ∧ T � 〈u, v〉 C ∧ T � u ∧ T � v

6. C ∧ T � u ⊥ if T = ∅ or V ar(T ∪ {u}) = ∅ and T 0 u.

⊥ denotes an unsatisfiable constraint.



The substitutions σ in  σ are to remember the assignments to variables

used at various steps for solving the constraints. If the subscript σ is

absent, it denotes the identity substitution.

Show: The rules transform a well-formed constraint into a well-formed

constraint.

Correctness: If C1  σ C2 and θ is a solution of C2 then σθ is a solution of

C1.

Hence if the new constraint has some solution then the old constraint also

has some solution.



Termination: The simplification rules terminate.

Define | C | to be the sum of the sizes of the right hand sides occurring in

the constraints.

We consider the pair (| V ars(C) |, | C |) to be the measure of a clause,

with lexicographic ordering.

Then the application of the rules make the measure strictly smaller.

In fact only polynomially long sequences of simplification steps are possible.



Finally it remains to show completeness of these set of rules. That is, every

constraint which has a solution can be simplified using these rules.

As for the intruder deduction problem we define a notion of simple

derivations.

Given sets T1 ⊆ . . . ⊆ Tk which occur in the constraint, a derivation δ of

Ti ` u as left-minimal if for all j ≤ i such that Tj ` u is derivable, the

leaves of δ are of the form Ti ` v with v ∈ Tj .



A derivation δ of Ti ` u is simple if

1. No branch contains the same node twice.

2. All subproofs are left-minimal.

3. If the last rule applied is a composition, then all nodes of the proof are

of the form Ti ` v with v ∈ Sub(Ti).

4. If the last rule applied is a decomposition then all nodes of the proof

are of the form Ti ` v with v ∈ Sub(Ti ∪ {u}).

Step 1: If Ti ` u has a derivation then it has a simple derivation.



We define Ti to the minimal unresolved left hand side in a constraint C if

for all Tj ( Ti such that Tj � u ∈ C, u is a variable.

In this case we define T ′
i = Ti ∪ {x | Tj � x ∈ C, Ti ( Ti}.

Step 2: Let σ be a solution of a constraint C and Ti a minimal unresolved

left hand side of C. If Tiσ ` u has a simple derivation whose last rule is a

decomposition or an axiom, then there exists some t ∈ Sub(ti) which is not

a variable, such that u = tσ.



Step 3: Let C be a constraint, σ a solution of C, and σ a minimal

unresolved left hand side. If Ti does not contain two distinct unifiable

terms, if Tiσ ` uσ has a derivation, if u ∈ Sub(Ti) and if u is not a

variable, then T ′
i ` u has a derivation.



Define C to be in resolved form if all the right hand sides are variables and

all left hand sides are non-empty.

Every resolved form has a solution: assign to every variable a term from the

least left hand side (which must be ground).

Step 4: Let σ be a solution of C which is not in resolved form. Then for

some θ, τ, C ′ we have C  θ C ′, σ = θτ and τ is a solution of C ′.

Hence to detect an attack, it suffices to guess a sequence of simplification

steps leading to a solved form.

Conclusion: Checking if a protocol with bounded number of sessions has an

attack is in NP.


