
Program Optimisation
Solutions of Homework 1

1. Here is the control-flow graph of the function swap.

START

STOP

STOP

M [A6] = t;

A6 = A0 + 1 · i;

M [A4] = R3;

R3 = M [A5];

A5 = A0 + 1 · i;

A4 = A0 + 1 · j;

t = M [A3];

A3 = A0 + 1 · j;

R2 = M [A2];

A2 = A0 + 1 · j;

R1 = M [A1];

A1 = A0 + 1 · i;

Neg(R1 > R2) Pos(R1 > R2)

a) The set of available expressions at each program point is indicated in Abbil-
dung 1.

b) Applying transformation 1 gives the control flow graph in Abbildung 2.
Applying transformation 2 gives the control flow graph in Abbildung 3.

2. a) Let the lattice of Booleans be named D = {0, 1}. We have the lattice M =
{f1, f2, . . . , f6} where f1(x, y) = 0, f2(x, y) = x ∧ y, f3(x, y) = x, f4(x, y) = y,
f5(x, y) = x ∨ y and f6(x, y) = 1. Then the only possible monotone functions
from M to D are as in the table below. I.e. [M → D] = {F1, F2, . . . , F8}.
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START

STOP

STOP

M [A6] = t;

A6 = A0 + 1 · i;

M [A4] = R3;

R3 = M [A5];

A5 = A0 + 1 · i;

A4 = A0 + 1 · j;

t = M [A3];

A3 = A0 + 1 · j;

R2 = M [A2];

A2 = A0 + 1 · j;

A1 = A0 + 1 · i;

R1 = M [A1];

Pos(R1 > R2)Neg(R1 > R2)

{A0 + 1 · i}

{A0 + 1 · i, A0 + 1 · j}

{A0 + 1 · i, A0 + 1 · j}

{A0 + 1 · i}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

{}

{A0 + 1 · i, A0 + 1 · j}

{A0 + 1 · i, A0 + 1 · j, R1 > R2}

Abbildung 1: Available expressions

x F1(x) F2(x) F3(x) F4(x) F5(x) F6(x) F7(x) F8(x)
f1 0 0 0 0 0 0 0 1
f2 0 0 0 0 0 0 1 1
f3 0 0 0 1 0 1 1 1
f4 0 0 0 0 1 1 1 1
f5 0 0 1 1 1 1 1 1
f6 0 1 1 1 1 1 1 1

b) Their ordering is as shown in Abbildung 4

3. a) First we show that the properties of a partial order are satisfied.

• Reflexivity: Let x ∈ D1 and y ∈ D2. Since D1 and D2 are partial orders
we have x v x and y v y. Hence (x, y) v (x, y).

• Anti-symmetry: Let (x1, y1), (x2, y2) ∈ D1 × D2 such that
(x1, y1) v (x2, y2) and (x2, y2) v (x1, y1). Hence we have
x1 v x2, (1)
y1 v y2, (2)
x2 v x1, (3)
y2 v y1, (4)
Since D1 is a partial order hence from (1) and (3) we have x1 = x2. Since
D2 is a partial order hence from (2) and (4) we have y1 = y2. Hence we
have (x1, y1) = (x2, y2).



STOP

M [A6] = t;

M [A4] = R3;

R3 = M [A5];

A4 = T2;

T2 = A0 + 1 · j;

T1 = A0 + 1 · i;

A5 = T1;

T3 = R1 > R2

t = M [A3];

STOP
T2 = A0 + 1 · j;

A3 = T2;

PosT3
NegT3

R2 = M [A2];

T2 = A0 + 1 · j;

A2 = T2;

R1 = M [A1];

START

A1 = T1;

T1 = A0 + 1 · i;

T1 = A0 + 1 · i;

A6 = T1;

Abbildung 2: Application of transformation 1

• Transitivity: Let (x1, y1), (x2, y2), (x3, y3) ∈ D1 × D2 such that (x1, y1) v
(x2, y2) and (x2, y2) v (x3, y3). Hence we have
x1 v x2, (1)
y1 v y2, (2)
x2 v x3, (3)
y2 v y3, (4)
Since D1 is a partial order, hence from (1) and (3) we have x1 v x3. Since
D2 is a partial order hence from (2) and (4) we have y1 v y3. Hence we
have (x1, y1) v (x3, y3).

We have shown that D1×D2 is a partial order. Now let X ⊆ D1×D2. We have to
show that X has a lub. Let X1 = {x | (x, y) ∈ X} and X2 = {y | (x, y) ∈ X}.
Since D1 is a complete lattice we have some a1 =

⊔
X1. Since D2 is a complete

lattice we have some a2 =
⊔
X2.

• We first show that (a1, a2) is an upper bound of X. Let (x, y) ∈ X. Then
x ∈ X1. Since a1 is an upper bound of X1 we have x v a1. Similarly we



STOP

M [A6] = t;

M [A4] = R3;

R3 = M [A5];

A4 = T2;

A5 = T1;

T3 = R1 > R2

t = M [A3];

STOP

A3 = T2;

PosT3
NegT3

R2 = M [A2];

T2 = A0 + 1 · j;

A2 = T2;

R1 = M [A1];

START

A1 = T1;

T1 = A0 + 1 · i;

A6 = T1;

;

;

;

;

Abbildung 3: Application of transformation 2

have y v a2. Hence we have (x, y) v (a1, a2).

• Next let (b1, b2) be some upper bound ofX. We have to show that (a1, a2) v
(b1, b2).

– First we show that that b1 is an upper bound of X1. Let x ∈ X1. Then
there is some y such that (x, y) ∈ X. Hence (x, y) v (b1, b2) because
(b1, b2) is an upper bound of X. Hence x v b1.

We have shown that b1 is an upper bound of X1. But a1 is the lub of X1

hence we must have a1 v b1. Similarly we show that a2 v b2. Hence we
have (a1, a2) v (b1, b2).

Thus we have shown that (a1, a2) =
⊔
X. Hence D1×D2 is a complete lattice.

b) • Part 1: Assume that f is monotone. To show that fx is monotone for x ∈
D1, we take any y1, y2 ∈ D2 such that y1 v y2. By reflexivity of D1 we have
(x, y1) v (x, y2). Since f is monotone, hence we have f(x, y1) v f(x, y2).
Hence fx(y1) v fx(y2). Hence fx is monotone. Similarly we show that fy



F4
F5

F6

F7

F3

F2

F8

F1

Abbildung 4: Ordering of elements of [M → D]

is monotone for y ∈ D2.

• Part 2: Assume that fx and fy are monotone for all x ∈ D1, y ∈ D2.
To show that f is monotone take any (x1, y1), (x2, y2) ∈ D1 × D2 such
that (x1, y1) v (x2, y2). Then we have x1 v x2 and y1 v y2. Since fx1 is
monotone we have fx1(y1) v fx1(y2) = fy2(x1). Since fy2 is monotone we
have fy2(x1) v fy2(x2). By transitivity of D we have fx1(y1) v fy2(x2).
Hence f(x1, y1) v f(x2, y2).

4. a) We have
f 0(x) = x
f 1(x) = (x ∩ a) ∪ b
f 2(x) = ((x∩a)∪b)∩a∪b = (x∩a∩a)∪(b∩a)∪b = (x∩a)∪(b∩a)∪b = (x∩a)∪b
As f 2(x) = f 1(x) hence f i(x) = f 1(x) for all i ≥ 1. Hence f ∗(x) = f 0(x) t
f 1(x) = f 0(x) ∪ f 1(x) = x ∪ (x ∩ a) ∪ b = x ∪ b.

b) We have f ∗(x) =
⊔{x, x + 1, x+ 2, x+ 3, . . .} =∞.

c) We have f i(0) = 0 for all i. Hence f ∗(0) =
⊔{0, 0, 0, . . .} = 0. For x ≥ 1 we

have f i(x) = 2ix. Hence f ∗(x) =
⊔{x, 2x, 4x, 8x, . . .} =∞. Thus

f ∗(x) =

{
0 if x = 0
∞ otherwise


