Program Optimisation Solutions of Homework 1

1. Here is the control-flow graph of the function swap.

a) The set of available expressions at each program point is indicated in Abbildung 1.
b) Applying transformation 1 gives the control flow graph in Abbildung 2.

Applying transformation 2 gives the control flow graph in Abbildung 3.
2. a) Let the lattice of Booleans be named $\mathbb{D}=\{0,1\}$. We have the lattice $M=$ $\left\{f_{1}, f_{2}, \ldots, f_{6}\right\}$ where $f_{1}(x, y)=0, f_{2}(x, y)=x \wedge y, f_{3}(x, y)=x, f_{4}(x, y)=y$, $f_{5}(x, y)=x \vee y$ and $f_{6}(x, y)=1$. Then the only possible monotone functions from M to \mathbb{D} are as in the table below. I.e. $[M \rightarrow \mathbb{D}]=\left\{F_{1}, F_{2}, \ldots, F_{8}\right\}$.

Abbildung 1: Available expressions

x	$F_{1}(x)$	$F_{2}(x)$	$F_{3}(x)$	$F_{4}(x)$	$F_{5}(x)$	$F_{6}(x)$	$F_{7}(x)$	$F_{8}(x)$
f_{1}	0	0	0	0	0	0	0	1
f_{2}	0	0	0	0	0	0	1	1
f_{3}	0	0	0	1	0	1	1	1
f_{4}	0	0	0	0	1	1	1	1
f_{5}	0	0	1	1	1	1	1	1
f_{6}	0	1	1	1	1	1	1	1

b) Their ordering is as shown in Abbildung 4
3. a) First we show that the properties of a partial order are satisfied.

- Reflexivity: Let $x \in \mathbb{D}_{1}$ and $y \in \mathbb{D}_{2}$. Since \mathbb{D}_{1} and \mathbb{D}_{2} are partial orders we have $x \sqsubseteq x$ and $y \sqsubseteq y$. Hence $(x, y) \sqsubseteq(x, y)$.
- Anti-symmetry: Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{D}_{1} \times \mathbb{D}_{2}$ such that $\left(x_{1}, y_{1}\right) \sqsubseteq\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \sqsubseteq\left(x_{1}, y_{1}\right)$. Hence we have
$x_{1} \sqsubseteq x_{2}, \quad(1)$
$y_{1} \sqsubseteq y_{2}, \quad(2)$
$x_{2} \sqsubseteq x_{1}, \quad(3)$
$y_{2} \sqsubseteq y_{1}, \quad(4)$
Since \mathbb{D}_{1} is a partial order hence from (1) and (3) we have $x_{1}=x_{2}$. Since \mathbb{D}_{2} is a partial order hence from (2) and (4) we have $y_{1}=y_{2}$. Hence we have $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.

Abbildung 2: Application of transformation 1

- Transitivity: Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{D}_{1} \times \mathbb{D}_{2}$ such that $\left(x_{1}, y_{1}\right) \sqsubseteq$ $\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \sqsubseteq\left(x_{3}, y_{3}\right)$. Hence we have
$x_{1} \sqsubseteq x_{2}, \quad$ (1)
$y_{1} \sqsubseteq y_{2}, \quad$ (2)
$x_{2} \sqsubseteq x_{3}$,
$y_{2} \sqsubseteq y_{3}$,
Since \mathbb{D}_{1} is a partial order, hence from (1) and (3) we have $x_{1} \sqsubseteq x_{3}$. Since \mathbb{D}_{2} is a partial order hence from (2) and (4) we have $y_{1} \sqsubseteq y_{3}$. Hence we have $\left(x_{1}, y_{1}\right) \sqsubseteq\left(x_{3}, y_{3}\right)$.
We have shown that $\mathbb{D}_{1} \times \mathbb{D}_{2}$ is a partial order. Now let $X \subseteq \mathbb{D}_{1} \times \mathbb{D}_{2}$. We have to show that X has a lub. Let $X_{1}=\{x \mid(x, y) \in X\}$ and $X_{2}=\{y \mid(x, y) \in X\}$. Since \mathbb{D}_{1} is a complete lattice we have some $a_{1}=\bigsqcup X_{1}$. Since \mathbb{D}_{2} is a complete lattice we have some $a_{2}=\bigsqcup X_{2}$.
- We first show that $\left(a_{1}, a_{2}\right)$ is an upper bound of X. Let $(x, y) \in X$. Then $x \in X_{1}$. Since a_{1} is an upper bound of X_{1} we have $x \sqsubseteq a_{1}$. Similarly we

Abbildung 3: Application of transformation 2
have $y \sqsubseteq a_{2}$. Hence we have $(x, y) \sqsubseteq\left(a_{1}, a_{2}\right)$.

- Next let $\left(b_{1}, b_{2}\right)$ be some upper bound of X. We have to show that $\left(a_{1}, a_{2}\right) \sqsubseteq$ $\left(b_{1}, b_{2}\right)$.
- First we show that that b_{1} is an upper bound of X_{1}. Let $x \in X_{1}$. Then there is some y such that $(x, y) \in X$. Hence $(x, y) \sqsubseteq\left(b_{1}, b_{2}\right)$ because $\left(b_{1}, b_{2}\right)$ is an upper bound of X. Hence $x \sqsubseteq b_{1}$.
We have shown that b_{1} is an upper bound of X_{1}. But a_{1} is the lub of X_{1} hence we must have $a_{1} \sqsubseteq b_{1}$. Similarly we show that $a_{2} \sqsubseteq b_{2}$. Hence we have $\left(a_{1}, a_{2}\right) \sqsubseteq\left(b_{1}, b_{2}\right)$.
Thus we have shown that $\left(a_{1}, a_{2}\right)=\bigsqcup X$. Hence $\mathbb{D}_{1} \times \mathbb{D}_{2}$ is a complete lattice.
b) - Part 1: Assume that f is monotone. To show that f_{x} is monotone for $x \in$ \mathbb{D}_{1}, we take any $y_{1}, y_{2} \in \mathbb{D}_{2}$ such that $y_{1} \sqsubseteq y_{2}$. By reflexivity of \mathbb{D}_{1} we have $\left(x, y_{1}\right) \sqsubseteq\left(x, y_{2}\right)$. Since f is monotone, hence we have $f\left(x, y_{1}\right) \sqsubseteq f\left(x, y_{2}\right)$. Hence $f_{x}\left(y_{1}\right) \sqsubseteq f_{x}\left(y_{2}\right)$. Hence f_{x} is monotone. Similarly we show that f_{y}

Abbildung 4: Ordering of elements of $[M \rightarrow \mathbb{D}]$
is monotone for $y \in \mathbb{D}_{2}$.

- Part 2: Assume that f_{x} and f_{y} are monotone for all $x \in \mathbb{D}_{1}, y \in \mathbb{D}_{2}$. To show that f is monotone take any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{D}_{1} \times \mathbb{D}_{2}$ such that $\left(x_{1}, y_{1}\right) \sqsubseteq\left(x_{2}, y_{2}\right)$. Then we have $x_{1} \sqsubseteq x_{2}$ and $y_{1} \sqsubseteq y_{2}$. Since $f_{x_{1}}$ is monotone we have $f_{x_{1}}\left(y_{1}\right) \sqsubseteq f_{x_{1}}\left(y_{2}\right)=f_{y_{2}}\left(x_{1}\right)$. Since $f_{y_{2}}$ is monotone we have $f_{y_{2}}\left(x_{1}\right) \sqsubseteq f_{y_{2}}\left(x_{2}\right)$. By transitivity of \mathbb{D} we have $f_{x_{1}}\left(y_{1}\right) \sqsubseteq f_{y_{2}}\left(x_{2}\right)$. Hence $f\left(x_{1}, y_{1}\right) \sqsubseteq f\left(x_{2}, y_{2}\right)$.

4. a) We have
$f^{0}(x)=x$
$f^{1}(x)=(x \cap a) \cup b$
$f^{2}(x)=((x \cap a) \cup b) \cap a \cup b=(x \cap a \cap a) \cup(b \cap a) \cup b=(x \cap a) \cup(b \cap a) \cup b=(x \cap a) \cup b$ As $f^{2}(x)=f^{1}(x)$ hence $f^{i}(x)=f^{1}(x)$ for all $i \geq 1$. Hence $f^{*}(x)=f^{0}(x) \sqcup$ $f^{1}(x)=f^{0}(x) \cup f^{1}(x)=x \cup(x \cap a) \cup b=x \cup b$.
b) We have $f^{*}(x)=\bigsqcup\{x, x+1, x+2, x+3, \ldots\}=\infty$.
c) We have $f^{i}(0)=0$ for all i. Hence $f^{*}(0)=\bigsqcup\{0,0,0, \ldots\}=0$. For $x \geq 1$ we have $f^{i}(x)=2^{i} x$. Hence $f^{*}(x)=\bigsqcup\{x, 2 x, 4 x, 8 x, \ldots\}=\infty$. Thus

$$
f^{*}(x)= \begin{cases}0 & \text { if } x=0 \\ \infty & \text { otherwise }\end{cases}
$$

