Program Optimisation Solutions of Homework 10

1. (a) Rather than computing all states and transitions, we compute them only as they are needed for our expression. This leads us to:

$$
\begin{aligned}
\delta_{c} & =\{R \mapsto 1, I \mapsto 2, c \mapsto 0\}=q_{0} \\
\delta_{R} & =\{R \mapsto 0, I \mapsto 1\}=q_{1} \\
\delta_{+}\left(q_{0}, q_{1}\right) & =\left\{R \mapsto 1, I \mapsto 1, I+c \mapsto 0, R_{1}+R_{2} \mapsto 0, R_{1}+I \mapsto 1\right\}=q_{2} \\
\delta_{+}\left(q_{2}, q_{0}\right) & =\left\{R \mapsto 2, I \mapsto 1, I+c \mapsto 0, R_{1}+R_{2} \mapsto 1, R_{1}+I \mapsto 2\right\}=q_{3} \\
\delta_{M}\left(q_{3}\right) & =\{R \mapsto 0, I \mapsto 1\}=q_{1}
\end{aligned}
$$

(b) The corresponding piece of code is:

$$
\begin{aligned}
& R_{1}=c_{1} \\
& R_{2}=R+R_{1} \\
& R_{3}=c_{2} \\
& R_{4}=R_{2}+R_{3} \\
& R_{5}=M\left[R_{4}\right]
\end{aligned}
$$

(c) The cost of storing $\left(\ldots\left(R+c_{1}\right)+\ldots\right)+c_{i}$ to I and R is $i+2$ and $2 i$ respectively. Thus, the cost difference is $i-2$, i.e. it is not constant. The number of states containing the cost differences is not bounded. The generation of the code selection automaton does not terminate without instruction 6 .

