Program Optimisation Solutions of Homework 11

1. (a) A straightforward solution is to proceed from the leaves (level 1) to the root (level d), level by level. Since the block instructions on each level i are independent, they can be used to fill the k slots of VLIW instructions. We need thus at least $\left\lceil\frac{N}{k}\right\rceil$ VLIW completely filled instructions. Supplementary, we might need on each level i with $1 \leq i<d$ one partially filled instruction.
Thus, the total number of VLIW instructions is in the worst case:

$$
\left\lceil\frac{N}{k}\right\rceil+d-1<\frac{N}{k}+1+d-1=\frac{N}{k}+d
$$

(b) In the previous approach, in the worst case (in which n_{i}, the number of nodes on each level i, is such that $n_{i} \bmod k=1$), we waste on each level except on the root level $k-1$ slots.
We can improve on this, by filling possible empty slots in the incomplete VLIW instruction for level i with independent block instructions from level $i+1$ for all $1 \leq i<d$ (level d, the root, needs alone one VLIW instruction). In the best case, we can fill all such empty slots. We obtain a number of VLIW instructions equal to:

$$
\frac{N-1}{k}+1
$$

We need to show thus that $\frac{N}{k}+d \leq 2\left(\frac{N-1}{k}+1\right)$.

$$
\begin{aligned}
& \frac{N}{k}+d \leq 2\left(\frac{N-1}{k}+1\right) \Leftrightarrow \\
& \frac{N-2}{k} \geq d-2 \Leftrightarrow \\
& \frac{N-1-1}{k} \geq d-2
\end{aligned}
$$

To be able to fully fill the slots, there must be at least k nodes on each level i with $1 \leq i<d$ (Otherwise, if $n_{i}<k$, since any instruction of level $i+1$ is dependent on some instruction of level i, we would not be able to place the two instructions in one VLIW.).
It follows that $N-1>k \cdot d$ and thus:

$$
\frac{N-1-1}{k} \geq \frac{k \cdot d-1}{k}=d-\frac{1}{k}
$$

Further:

$$
d-\frac{1}{k} \geq d-2 \Leftrightarrow k \geq 1
$$

It follows q.e.d.

